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Abstract 

The overhead of remote memory accesses is a major impediment to achieving good 
application performance on scalable shared-memory multiprocessors. This dissertation 
explores ways in which to exploit network and memory bandwidth in order to reduce 
the average cost of memory accesses. We consider scenarios (1) where the remote access 
cost is dominated by contention, and (2) where the hardware provides abundant band- 
width and the remote access time is dominated by the unsaturated request/access/reply 
sequence of operations. We introduce and evaluate two techniques for increasing the 
effective bandwidth available to processors, software interleaving and eager combining. 
We also evaluate strategies for hiding the high cost of remote accesses, including several 
forms of prefetching and update-based coherence protocols. We use both analytic mod- 
els and detailed simulations of multiprocessor systems to quantify the effectiveness of 
these techniques, and to provide insight into the potential and limitations of exploiting 
bandwidth to reduce average memory access cost. 
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1     Introduction 

Scalable shared-memory multiprocessors use hardware caches to reduce the average cost 
of a data access by storing data close to processors that need them. However, due to 
several reasons, not all memory references hit in the processor caches. A cache miss 
may require a remote memory access, which invariably takes a significant number of 
processor cycles to satisfy. This overhead is a major impediment to achieving good 
application performance on scalable multiprocessors. 

Consider the simplified view of a scalable multiprocessor presented in figure 1.1. In 
this organization, which is similar to the Stanford DASH [Lenoski et al., 1993] multipro- 
cessor, satisfying a write miss remotely might not introduce any running time overhead. 
Write buffers and relaxed consistency models [Dubois et al., 1988] allow for write re- 
quests to be performed without stalling the processor and, therefore, hide most of the 
cost of remote writes. The overhead of read misses satisfied remotely cannot be hidden 
however, since read misses always stall the processor. This stall period can significantly 
affect performance, since satisfying a read miss remotely requires (at least) a local bus 
access, a trip through the network to the node that is to provide the data block, a bus 
access on that node, a memory access to fetch the data, a trip back across the network, 
and another local bus access to fill the cache line. 

On current multiprocessors, a read miss can take from about 50 processor cycles 
on the MIT Alewife machine [Agarwal et al., 1995] to about 250 processor cycles on 
the Kendall Square Research KSR1 multiprocessor [Kendall Square Research Corp.. 
1992]. Given that RISC microprocessors can execute on average close to one instruction 
per processor cycle and a cache hit usually takes a single cycle, a processor taking a 
read miss could execute tens or hundreds of instructions during the time the miss is 
outstanding. This scenario becomes even worse if we consider the latest developments 
in superscalar microprocessors [Smith and Weiss, 1994]. As processor speeds continue 
to improve at a dramatic rate, the relative importance of remote accesses will continue 
to grow. 

The question then is how to reduce the average memory access overhead. Many 
researchers have been investigating techniques intended to reduce this form of overhead. 
These techniques can be divided into three groups: techniques that reduce the number 
of remote accesses, techniques that reduce the cost of individual remote accesses, and 
techniques that overlap remote accesses and computation and, thereby, hide (or tolerate) 
the overhead of remote accesses.  Our work considers techniques belonging to the two 
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Figure 1.1: Example of multiprocessor architecture. 

latter categories. We consider two different scenarios: (1) where the remote access time 
is dominated by memory or network contention; and (2) where the hardware provides 
high remote access bandwidth and the remote access time is dominated by the duration 
of the remote (unsaturated) request/access/reply sequence of operations. 

This dissertation reports on the performance of novel techniques that increase the 
effective bandwidth available to processors so as to reduce the cost of remote accesses 
during periods of contention, and on the effectiveness of aggressively exploiting high- 
bandwidth resources to hide the overhead of remote accesses. We use both analytic 
models and detailed simulations of scalable cache-coherent multiprocessor systems to 
evaluate these techniques, and to provide insight into the potential and limitations of 
using excess network and memory bandwidth as a solution to the remote access overhead 

problem. 

1.1     Related Work 

There has been a significant amount of research on strategies for reducing the average 
memory access time in scalable multiprocessors. In this section we summarize this 
research and relate it to the work presented in this dissertation. Each of the following 
chapters contains a more specific comparison between the work presented in the chapter 
and other related approaches. 

1.1.1     Reducing the Number of Remote Accesses 

Hardware caches provide the most effective way to reduce the number of remote accesses 
in a multiprocessor [Gupta et al, 1991]. However, caches are not always successful at 



keeping the number of remote accesses down to an acceptable level. Thus, several 
techniques have been proposed to improve the performance of hardware caches. Chief 
among these is blocking (or tiling) of data accesses [Lam et al, 1991], whereby successive 
references to the same data are grouped temporally close to each other in parallel loops. 

Cache-conscious thread and data allocation techniques are also very effective strate- 
gies for improving locality of reference. Among these strategies, loop transformations 
(such as loop interchange [Padua and Wolfe, 1986]) are used to improve the spatial local- 
ity of multi-word cache line accesses, while false-sharing-elimination techniques (such as 
indirection [Eggers and Jeremiassen, 1991] and software caching [Bianchini and LeBlanc, 
1992]) are used to improve processor locality. Affinity scheduling [Vaswani and Zahor- 
jan, 1991; Markatos and LeBlanc, 1994] is used to co-locate threads and the data they 
use. 

Implementations of caching in software can also reduce the number of remote ac- 
cesses significantly [Bolosky et al., 1989; Cox and Fowler, 1989; LaRowe Jr. and Ellis, 
1991], by creating copies of read-only pages in the processors' local memories and moving 
pages between these local memories on writes. 

1.1.2    Reducing the Cost of Individual Remote Accesses 

Several techniques have been proposed for reducing the overhead of individual remote 
accesses. In interconnection network design, for instance, wormhole routing [Dally, 1990] 
and low-degree topologies [Dally, 1990; Agarwal, 1991] are currently used commercially, 
as these approaches have been shown to reduce the overhead of network transfers. Adap- 
tive routing techniques [Ni and McKinley, 1993] have been proposed to alleviate network 
congestion problems. 

A large body of work has also been done on memory-contention-alleviating tech- 
niques. The majority of these techniques assume special hardware support, such as 
interleaved memory and multi-stage interconnection networks (MINs) with combining 
of memory references. In scalar multiprocessors, memory interleaving is sometimes used 
to alleviate contention caused by many processors trying to access the same memory 
module. The IBM RP3 [Pfister et al, 1985], the Tera computer [Alverson et al, 1990], 
and the BBN TC2000 [BBN, 1989] are examples of machines that use interleaving of 
memory addresses. 

While memory interleaving tackles memory contention caused by processors trying 
to access data in nearby addresses, combining multi-stage interconnection networks try 
to avoid contention due to accesses to the same datum. The idea is to combine references 
to the hot datum as requests flow through the interconnection network. A few multi- 
processors have implemented combining switches, including the NYU Ultracomputer 
[Gottlieb et al, 1983] and the IBM RP3 [Pfister et al, 1985]. 

Among the contention-alleviating techniques that do not require special hardware, 
software broadcasting stands out as the most frequently used technique. Software broad- 
casting typically employs a logarithmic distribution of data, where the source processor 
sends the data to N other processors, each of which pass the data on to N other proces- 
sors, until all processors receive the data. Two other related techniques for alleviating 



memory contention are software combining trees [Yew et al, 1987] and data replication. 
Software combining trees are analogous to hardware combining networks, and incorpo- 
rate logarithmic broadcasting. As in combining networks, requests for shared data flow 
from the leaves of the tree to the root, and the data flows from the root down to the 
leaves. As in logarithmic broadcasting, the data flows down the tree in O(logP) steps 
(where P is the number of processors), and the width of the tree limits the potential 
for memory contention. 

We can also limit memory (and possibly network) contention by replicating data 
across multiple memory modules. By distributing the requests for data evenly among 
the copies, we can reduce or eliminate memory contention for the original copy. 

In this dissertation, we propose and evaluate novel techniques that use data dis- 
tribution (Software Interleaving), and replication and combining (Eager Combining) to 
increase the effective bandwidth available to processor requests, thereby allowing for 
reductions in the cost of remote accesses in the presence of contention. 

1.1.3    Overlapping Remote Accesses and Computation 

The most important techniques for overlapping remote accesses and computation are re- 
laxed consistency, update-based coherence protocols, prefetching, and multiple-context 
processors. In these techniques, remote accesses happen in the "background", i.e. the 
processor does not stall waiting for the accesses to complete. 

Relaxed consistency models [Dubois et al, 1988; Gharachorloo et al., 1990] reduce 
the cost of remote writes, as writes by a processor are allowed to be seen out of order 
by other processors. Thus, relaxed consistency protocols allow a writing processor to 
continue its normal execution before receiving all the write acknowledgements from 
other processors. Only synchronization operations must be seen in the same order by 
all processors under a relaxed consistency protocol. 

In the presence of write buffers and relaxed consistency, update-based protocols 
[Archibald and Baer, 1986; Lilja, 1993] reduce the average cost of reads by eagerly 
multicasting a write to all processors sharing the written cache block. 

Multiple-context processors [Smith, 1978b; Alverson et al, 1990; Agarwal, 1992] tol- 
erate the overhead of remote reads and writes by switching between threads of execution 
when remote memory accesses must occur. Thus, these processors can execute useful 
work while remote accesses are pending. 

Prefetching [Callahan et al, 1991; Mowry and Gupta, 1991; Dahlgren et al, 1993] 
also tolerates the overhead of remote read and write accesses, by issuing these requests 
well before they are actually needed by the processor. Requests must be issued enough 
in advance so that they can complete before the processor has to stall. 

The performance of these techniques is affected by the amount of remote access 
bandwidth available to processors, since the techniques rely on overlapping communica- 
tion and computation to avoid processor stalls, and the performance of communication 
operations depends on bandwidth. In this dissertation we examine techniques that over- 
lap remote accesses and computation to determine how aggressively they can be applied 
in the presence of abundant remote access bandwidth. 



The Tera computer [Alverson et ai, 1990] also exploits high bandwidth to tolerate 
the overhead of remote accesses. When completed, the Tera multiprocessor will provide 
extremely high network and memory bandwidth, resulting from an aggressively-designed 
direct network, and memory interleaving and randomization. Overlapping of remote ac- 
cesses will be implemented with multiple-context processors; each processor will switch 
between hardware contexts on every cycle. Instead of a cache, each processor will have 
128 (the maximum number of contexts) different sets of registers. Even though our work 
does not focus on multiple-context processors, our experience with other techniques for 
overlapping communication and computation offers a cautionary note for multiproces- 
sors like the Tera. Our work suggests that the performance of such machines depends 
critically on the ability to distribute memory references uniformly. Even a slight case 
of non-uniform references can degrade performance significantly, due to the enormous 
demands put on the memory sub-system by the large number of contexts and the lack 
of caches in the machine. 

This dissertation also investigates whether excess bandwidth is enough to make 
techniques currently seen as suboptimal (partly as a result of insufficient bandwidth) 
outperform their competitors. More specifically, we consider various forms of hardware 
prefetching as alternatives to software prefetching, and a write-update protocol as an 
alternative to write-invalidate protocols. 

1.2 Methodology 

A fundamental part of our work is understanding the effect of architectural variations on 
the performance of real applications running on scalable cache-coherent multiprocessors 
with release consistency [Gharachorloo et a/., 1990]. Thus, our studies are based on 
execution-driven and trace-driven simulation. Each node in the simulated machine 
contains (at least) a single processor, a cache, local and directory memory, and a network 
interface. We simulate the processor at the level of individual instructions, the network 
at the level of individual flits (whenever necessary), and the memory modules at the 
level of individual requests. In all of our studies, we assume that remote accesses are 
30-100 times more expensive than a cache hit. We present more details about the 
simulation infrastructure and application workload used for each of our studies in their 
corresponding chapters. 

1.3 Overview of the Dissertation 

The remainder of the dissertation is organized as follows. Chapters 2 and 3 describe 
two techniques that can increase effective memory and network bandwidth and, as a 
result, can alleviate the effect of contention on remote access overhead. In chapters 
4 and 5, we investigate whether fetching large amounts of data on a cache miss can 
provide performance benefits under high network and memory bandwidth assumptions. 
Chapter 6 presents the results of our investigation of whether high memory and network 
bandwidth can justify the use of a write-update coherence protocol, which places an 



enormous burden on the network and the memories in the form of update transactions. 
Chapter 7 presents our conclusions. 



2     Reducing Contention with Eager 
Combining 

One common cause of poor performance in large-scale shared-memory multiprocessors 
is limited memory or interconnection network bandwidth. Even well-designed machines 
can exhaust the available bandwidth when a program issues an excessive number of 
remote memory accesses or when remote accesses are distributed non-uniformly. While 
techniques for improving locality of reference are often successful at reducing the number 
of remote references, a non-uniform distribution of references may still result, which can 
cause contention both in the interconnection network and at remote memories. 

A non-uniform distribution of remote accesses can be caused by a variety of com- 
mon data sharing patterns. Centralized spin locks, for example, force all processors to 
access the memory module containing the lock data structure. In many linear algebra 
algorithms, including straightforward parallelizations of Gaussian elimination and LU 
decomposition, a single processor writes a row of a matrix which must then be read by 
every other processor. Classical graph algorithms, such as transitive closure and all-pairs 
shortest path, exhibit this same structure. Many optimization algorithms maintain the 
best global solution found so far in a global location, and require all processors to access 
that location each time a new solution is found. These sharing patterns can introduce 
enormous network and memory contention on large-scale machines, since a large number 
of processors may need to access a single memory module simultaneously. 

These sharing patterns are all specific instances of producer/consumer data [Ben- 
nett et a/., 1990], where data is written by one processor and then read by many pro- 
cessors. Several techniques have been developed for reducing the contention caused by 
producer/consumer sharing. Hardware combining, as in the IBM RP3 [Pfister et al., 
1985], can alleviate contention for spin locks by combining requests to a single memory 
location. Alternatively, spin locks can be implemented so as to spin on local memory 
only, thereby eliminating most remote references associated with synchronization. Opti- 
mization algorithms can avoid contention by examining or updating the global solution 
infrequently. Linear algebra algorithms can exploit the properties of numerical equations 
to improve locality of reference, and as a side-effect eliminate most producer/consumer 
sharing [Gallivan et al., 1990]. 

Although most of these techniques reduce contention and improve locality of refer- 
ence, they may introduce significant complexity in the algorithm, and do not generalize 
to all producer/consumer sharing.   For example, the block algorithms used in linear 



algebra are quite complex (compared to the straightforward algorithms), and do not 
generalize to graph algorithms. Optimization algorithms that avoid using the global 
solution so as to improve locality of reference may adversely affect the search [Bianchini 
and Brown, 1993]. Given the frequency with which producer/consumer sharing arises, 

the performance implications for large-scale machines, and the complexity of eliminating 

this sharing pattern on a case-by-case basis, a general solution is desirable. 

As a general solution to the problem of producer/consumer data sharing, we pro- 
pose a new coherence protocol, called eager combining. The protocol is an extension 
of the DASH write-invalidate protocol [Lenoski et al, 1990]. Our protocol incorpo- 
rates ideas from software combining trees [Yew et al, 1987] and eager sharing [Wittie 
and Maples, 1989] to distribute requests for producer/consumer data throughout the 
machine. The protocol replicates a producer's data among multiple memory modules, 
thereby effectively increasing both the memory and network bandwidth of the producer, 
and dramatically decreasing the remote access overhead experienced by consumers. 

Munin [Bennett et al., 1990], a runtime system for networks of workstations, also 
includes a coherence protocol for producer/consumer data. The Munin protocol is based 
on object replication and write update. Munin runs on a network of SUN workstations, 
and exploits the broadcast capabilities of the Ethernet. Our protocol is intended for use 
in large-scale shared-memory machines with no hardware broadcast mechanism. 

Most previous studies of non-uniform addressing and contention have focused pri- 
marily on the effects of hot spots on multistage interconnection networks [Pfister and 
Norton, 1985; Patel and Harrison, 1988]. These studies focused on eliminating tree 
saturation, and used synthetic applications for experiments. Our work focuses on pro- 
ducer/consumer sharing in direct-connected, distributed-shared-memory machines (such 
as the Stanford DASH [Lenoski et al, 1993] and MIT Alewife [Agarwal et al, 1995]), 
and our experiments are based on real application programs. 

In this chapter we examine the effect of producer/consumer data on network and 
memory contention. We use detailed execution-driven simulation of parallel programs 
to quantify the performance impact of producer/consumer data as a function of the 
network and memory bandwidth and the number of processors in the machine. Our 
simulation results show that eager combining can improve performance (and effective 
bandwidth) by a factor of 4 or more when used for programs with producer/consumer 

data. 

The remainder of this chapter is organized as follows. In Section 2.1 we describe our 
multiprocessor simulator and application suite. In Section 2.2 we quantify the effects of 
contention as a function of network and memory bandwidth. Section 2.3 describes the 
protocol in detail. In Section 2.4 we evaluate the performance of our applications under 
the eager combining protocol, and compare it to software logarithmic broadcasting. We 
conclude, in Section 2.5, with a summary of our results. 



Machine Latency/Word Q Size Mem Bwidth 
Cont-free 1/2/4 cycles 0 Infinite 
High 1 cycle 16 400 MB/sec 
Medium 2 cycles 16 200 MB/sec 
Low 4 cycles 16 100 MB/sec 

Table 2.1: Memory bandwidth levels used in simulated machine. 

2.1     Methodology and Workload 

We use an on-line, execution-driven simulator that exploits a mixture of interpretation 
and native execution to simulate unmodified MIPS R3000 object code. The simulator 
is divided into two parts, an event generator [Veenstra and Fowler, 1994a] and an event 
executor. The event generator simulates the processor and registers, and calls the event 
executor on every memory reference. The event executor processes each reference, 
returning immediately on a cache hit, generating a memory request in case of a cache 
miss to local memory, or passing the reference through the interconnection network to a 
remote node otherwise. The event executor determines which processors block awaiting 
remote references and which processors continue to execute. We simulate events at the 
level of processor cycles; all simulation parameters and results are expressed in terms of 
processor cycles. Each node in the simulated machine contains a single processor, cache 
memory, local memory, directory memory, and network interface. Each processor has 
an infinite, write-back cache with 32-byte blocks. Caches are kept coherent using our 
implementation of the DASH protocol [Lenoski et al., 1990] with release consistency. 

Throughout this chapter we refer to the ensemble of addressable local memory and 
directory memory at each node as a "memory module." We simulate three types of 
memory systems: memory modules that respond with a negative acknowledgement if 
the memory is busy; memory modules that queue requests (coming either from the cache 
or network interface) when the memory is busy; and infinitely-ported contention-free 
memory modules. An infinitely-ported memory module can satisfy an arbitrary number 
of memory requests simultaneously, but each request is delayed by the memory service 
time (latency per cache block). We vary the memory latency per block between 8 and 32 
cycles. Each shared address space consists of 4KB pages. The pages of an address space 
are allocated to processors in round-robin fashion. The memory latency and bandwidth 
parameters used in our experiments are described in table  2.1. 

The interconnection network is a bi-directional wormhole-routed mesh, with 
dimension-ordered routing. At any node of the machine, the connection between the 
switch node and the processing node's network interface has the same bandwidth as 
any network link. Thus, we will refer to the bandwidth of that connection as the net- 
work bandwidth per node. Switch nodes introduce a 2-cycle delay to the header of each 
message. In our finite-bandwidth networks (derived from the Alewife cycle-by-cycle 
network simulator), contention for network links and buffers is fully captured. The net- 
work interface has a queue for out-going messages (triggered either by the cache or the 
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Machine Path Width Bi-dir Link Bwidth 
Cont-free 32/16/8 bits Infinite 
High 32 bits 800 MB/sec 
Medium 16 bits 400 MB/sec 
Low 8 bits 200 MB/sec 

Table 2.2: Network bandwidth levels used in simulated machine. 

memory module in the node). For comparison purposes, we also implement an ideal- 
ized, contention-free network, where the link width determines the bandwidth available 
to an individual packet, but any number of packets can traverse the same link or be 
stored in the same buffer simultaneously. The network bandwidth parameters used in 
our experiments are described in table  2.2. 

Our application workload consists of five programs with producer/consumer data 
sharing: two linear algebra applications (Gaussian elimination and matrix inversion), 
two graph algorithms (transitive closure and all-pairs-shortest-paths), and an optimiza- 
tion algorithm (simulated annealing). 

Our linear algebra applications are similar in that, during each phase of the computa- 
tion, processors need access to a pivot row of the matrix describing the linear equations. 
This pivot row is written by one processor and then read by every other processor. In 
our graph applications, processors also require access to a pivot row of the adjacency 
matrix representing the graph. The pivot row is written by one processor and then 
read by many other (possibly all) processors. In all the applications, the elements of 
a matrix row are allocated to consecutive addresses in a single memory module, so all 
processors direct a request to the same memory module after synchronizing. In our 
simulated annealing program, processors search the solution space independently, peri- 
odically examining the current best-known solution, which is stored in a global location. 

Our implementation of Gaussian elimination is similar in structure to the LU- 
decomposition application in [Mowry and Gupta, 1991]. The input is a 512 x 512 
matrix of linear equations; we use locks for synchronization. Our implementation of 
matrix inversion also uses an input matrix of size 512 X 512, but synchronizes with 
barriers. The input graph for transitive closure has 768 vertices, and each vertex is 
connected to each other vertex with probability 0.5; we use locks for synchronization. 
We use a straightforward parallelization of Warshall-Floyd's algorithm to compute the 
all-pairs shortest paths of a graph; the input graph has 512 vertices, and each vertex is 
connected to each other vertex with probability 0.5. We use barrier synchronization for 
all-pairs. Our simulated annealing program finds the minimum of a complex function 
of 8 variables. 
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Figure 2.1: Running time (M cycles) of SOR and Gaussian elimination. 

2.2    Effect of Bandwidth on Contention 

In this section we quantify the effects of contention that result from producer/consumer 
sharing as a function of network and memory bandwidth. 

2.2.1     Effect of Non-Uniform Distribution of References 

Figure 2.1 compares the running time of SOR and Gaussian elimination on a multi- 
processor with low memory and network bandwidth (200 MB/second, assuming a 100 
MHz clock) to the running time on an ideal contention-free multiprocessor. SOR im- 
plements successive over-relaxation of a 768 X 768 matrix. Blocks of rows of the matrix 
are assigned to each processor. Processors work roughly independently of each other; 
communication only takes place when processors update the elements of their bound- 
ary rows. The application is executed for 50 iterations, which are divided into pairs of 
phases separated by barriers. 

From the figure, we observe that the running time of SOR is not affected by con- 
tention; the machine with limited memory and network bandwidth performs comparably 
to the contention-free machine. The running time of Gaussian elimination is affected 
by contention however; the program can utilize fewer than 20 processors on the limited- 
bandwidth machine, but can exploit over 120 processors on the contention-free machine. 

Both SOR and Gaussian elimination have very low miss rates - around 2% on 
128 processors. Thus, both programs have good locality of reference. In general, we 
would expect programs with very low miss rates to perform well on large-scale machines 
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Network Memory Bwidth 

Bwidth High Medium Low 

rt cfrt rl cfrl rt cfrt rl cfrl rt cfrt rl cfrl 

High 

Medium 

Low 

22.4 

22.7 

23.7 

22.3 

22.5 

22.9 

55.3 

70.8 

119.3 

50.2 

59.4 

80.2 

22.5 

22.8 

23.7 

22.4 

22.6 

23.0 

62.9 

76.1 

125.0 

56.1 

65.3 

85.9 

23.1 

23.3 

23.9 

22.7 

22.9 

23.3 

89.6 

99.4 

137.3 

68.0 

77.0 

97.7 

Table 2.3: Running times and avg.  latencies of Gauss (with and without contention) 
on 16 processors. 

Network Memory Bwidth 

Bwidth High Medium Low 

rt cfrt rl cfrl rt cfrt rl cfrl rt cfrt rl cfrl 

High 

Medium 

Low 

23.8 

43.2 

82.4 

4.8 

5.0 

5.3 

1201 

2366 

4656 

81.3 

91.7 

114.9 

29.4 

43.4 

81.3 

4.9 

5.1 

5.5 

1507 

2368 . 

4651 

88.9 

99.1 

122.3 

54.1 

60.4 

82.8 

5.2 

5.4 

5.7 

2847 

3233 

4676 

103.9 

114.1 

137.4 

Table 2.4: Running times and avg.  latencies of Gauss (with and without contention) 
on 128 processors. 

(assuming sufficient parallelism and appropriate synchronization). The problem with 
Gaussian elimination is not the number of remote references, it is the non-uniform 
distribution of those references. Programs with good locality and nearest-neighbor 
communication, like SOR, do not saturate the network or memories. Programs with 
good locality and a highly non-uniform distribution of references can saturate both the 
network and memories. 

This experiment shows that it may be difficult to design a multiprocessor that can 
run all classes of applications efficiently. Even well-designed machines, with seemingly 
sufficient network and memory bandwidth, may perform poorly for a large class of 
applications due to bandwidth limitations. 

2.2.2     Scaling the Number of Processors 

In tables 2.3-2.4 we examine the aggregate effect of the two types of contention on 
the performance of Gaussian elimination using realistic scenarios of limited network 
and memory bandwidth. These tables present the running time of the program on 
machines with finite network and memory bandwidth (rt), the running time in the 
absence of network and memory contention (cfrt), the average remote access latency on 
the realistic machines (rl), and the average remote access latency on the contention-free 
machines (cfrl). Running times are given in millions of cycles. 

It is interesting to observe the evolution of the contention problem as we increase the 
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size of the machine from 16 to 64 to 128 processors. On 16 processors, contention for 
the network and memories is virtually nonexistent. In each case the running time under 
limited bandwidth is roughly the same as the running time on a contention-free machine. 
In addition, the difference in running time between the machine with high memory and 
network bandwidth and the machine with low memory and network bandwidth is only 
about 7%. Although the average remote access latency on these machines differs by a 
factor of 2-3, the miss rate is small enough that this factor does not significantly affect 
running time. 

On 64 processors (not shown), the running time on the limited bandwidth machines 
is substantially higher than the running time on the corresponding contention-free ma- 
chines (by 30% on the machine with the highest memory and network bandwidth and 
470% on the machine with the lowest memory and network bandwidth). Whereas a 
factor of four increase in processors (from 16 to 64 processors) produces a factor of 2.5 
improvement in running time on the machine with high memory and network band- 
width, the same increase in processors results in a higher running time on the machines 
with low memory or network bandwidth, and no significant increase in running time on 
the machines with medium network bandwidth. The effect of contention is illustrated 
most dramatically by the average remote access latency, which increases from 123 cycles 
to over 1800 cycles on the machine with low memory and network bandwidth. 

These trends continue as we increase the number of processors from 64 to 128. In 
the absence of contention, a factor of two increase in processors produces a factor of 1.4 
improvement in running time on most of the machines. When contention is included, 
the running time increases by a factor of 3 or more in nearly every case. Even on the 
high bandwidth machines, the remote access latency is well over 1200 cycles. 

As we reduce memory bandwidth and keep the network bandwidth constant (that is, 
as we move across a row of the tables), running time remains roughly constant until the 
memory bandwidth becomes strictly less than the network bandwidth. At that point, 
the running time increases, since it is dominated by memory contention effects. If we 
increase the network bandwidth while keeping the memory bandwidth fixed (that is, 
as we move up a column in the tables), the running time improves greatly whenever 
memory bandwidth is greater than or equal to network bandwidth. 

These results suggest that the usual notion of balanced architecture exhibits a serious 
bottleneck when faced with producer/consumer sharing. When memory and (unidirec- 
tional) network bandwidth are comparable, the producer's network link cannot keep 
up with the traffic, in part because the network link must transfer more data than the 
memory (including message headers, addresses, and operation codes), and also because 
the memory and cache controller compete for access to the network at each node of the 
multiprocessor. 

These results show that producer/consumer data sharing can introduce enormous 
contention on large-scale machines. The problem is that only an inordinate amount 
of bandwidth can eliminate the contention levels observed here. Rather than build 
machines with sufficient bandwidth to handle extreme cases of non-uniform distributions 
of references, we consider ways to provide higher effective bandwidth. 
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2.3    Eager Combining Protocol 

In this section we describe a coherence protocol that implements data replication for hot 
spots caused by widespread producer/consumer sharing. Our goal is to increase effective 
memory bandwidth and decrease the need for network bandwidth in direct-connected, 
distributed-shared-memory multiprocessors. 

We assume certain physical address ranges are marked hot, and these addresses are 
treated specially by the coherence protocol. Our basic approach is to designate a fixed 
number of "server nodes" for each hot physical page, assigning to each server some subset 
of the remaining nodes as clients. The protocol uses eager sharing to distribute data to 
servers, which then satisfy requests from multiple client nodes. Multiple requests that 
cannot be satisfied immediately by a server are combined to reduce the traffic directed 

to a hot spot. The protocol assumes the release consistency model. Since our approach 
incorporates the properties of both eager sharing and combining trees, we call it eager 

combining. 

We use the DASH cache coherence protocol [Lenoski et al., 1990] as a starting point 

for our eager combining protocol. Each data block in DASH is assigned to a memory 
module, and that module's node is referred to as the data block's home node. In the 
eager combining version of the protocol, we designate a fixed number of server nodes for 
each hot data block, which are determined statically from the physical page number. 
As with regular data blocks, hot data blocks can be in one of three states: uncached, 
read-shared, and modified. We make three modifications to the DASH protocol in order 
to handle hot data blocks: 

• Reads to a hot data block are directed to a server rather than to the home node; 

• When a hot data block makes a transition from modified to read-shared, the block's 
home node multicasts the data to the block's servers; 

• When a hot data block makes a transition from read-shared to modified, the clients 
and the servers must have their copies of the block invalidated. 

The following sections describe each type of transaction in detail. Since our experiments 
assume infinite processor caches, the following description omits the details of how to 
handle cache replacements. 

2.3.1     Read Requests 

When a node makes a read request to a hot data block, the request goes directly to the 
proper server, which is selected based on the requester's node number and the physical 
page number. If the server has an unmodified copy of the block, it stores information 
to the effect that the requesting processor is a new client and sends the block to the 
requester. If the server does not have a copy of the block, or if the server has modified 
its copy of the block, the server marks the requester as a client and forwards the client's 
request to the home node. Subsequent requests from other clients for the same data 
block are queued at the server until it receives the block from the home node. 
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Upon receiving a forwarded read request, the home node proceeds according to the 
state of the data block. If the block is in the read-shared state, the home node sends 
the block to the client directly. If the block is in the modified state, the home node 
forwards the request to the current owner of the block. As in the DASH protocol, the 
owner transmits the data block to both the requester and the home node. On receiving 
the updated contents of the block, the home node sends a copy to each of the servers 
for the block, and sets the state of the block to read-shared. The multicast from the 
home node to the servers can be overlapped with computation on all nodes. 

It is important to note that the home node does not multicast a data block to its 
servers each time the block is written. The multicast takes place only on the transition 
from modified to read-shared. Thus, we avoid eager sharing of partially modified data 
blocks. Nonetheless, eager combining could exacerbate any adverse performance effects 
caused by fine-grain sharing and false sharing. 

A multicast and the corresponding transition to the read-shared state are also per- 
formed by the home node upon receiving a forwarded read request for an uncached hot 
data block. 

2.3.2    Write Requests 

When a client issues a write to a hot data block, a request for ownership (and in some 
cases, data) is sent directly to the home node, bypassing the server. On receiving this 
request, the home node proceeds according to the current state of the data block. If 
the block is in the modified state, the protocol proceeds almost exactly as in DASH: the 
request is forwarded to the current owner of the block, which transfers ownership (and 
perhaps data) to the requesting node, and requests that the home node update the own- 
ership of the block. Although this latter request does not generate an acknowledgement 
in the DASH protocol, the eager combining protocol does require an acknowledgement 
from the home node to the previous owner of the block, so as to avoid sending ownership 
update messages through servers to the home node. * 

If the write finds the data block in the read-shared state, the home node must 
invalidate all copies, both in the servers and clients. To implement these invalidations, 
the home node sends invalidation messages to servers, who then pass on invalidations to 
their clients. In this scheme, the directory information in the home node is consistent 
with respect to the state of a data block and the number of servers, but not the number 
of clients. When a write request reaches the home node, the home sends the data to 
the new owner, and tells the new owner the number of servers caching copies of the 
data block. The home node sends invalidation messages to each sever, which then 
send invalidation messages to each client. When the clients have all acknowledged the 
invalidation to their server, the server sends an acknowledgement to the new owner. The 

The reason for this extra acknowledgement message is that the ownership update message and a 
subsequent read request by the same processor may arrive out-of-order at the home node, due to the 
different paths these messages take through the network. This message does not have a noticeable 
impact on performance, since the extra acknowledgement is not in the critical path of the processors. 
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Consistency Protocol Tot Messages Num Hops 
Sequential EC 

DASH-like 
(2S + 2(C - SC)) + 2 

2C + 2 
(2S + 2(C - SC)) + 2 

2C + 2 

Release EC 
DASH 

(2S + 2(C-SC)) + 2 
2C + 2 

2 
2 

Table 2.5: Messages transferred in coherence actions (read-shared to modified). 

home node invalidates the previous owner of the data block, which then acknowledges 
the new owner directly. 2 

2.3.3    Protocol Overhead 

Eager combining is not without costs. It introduces additional messages and requires 
extra space for servers to keep track of their clients. We will now consider how much 
overhead is associated with the protocol. 

Tables 2.5 and 2.6 present a comparison between the number of messages involved 
in the DASH protocol and in eager combining. In these tables, S stands for the number 
of servers per hot data block, C is the total number of clients of the hot block, and 
SC is the number of servers that are also clients of the hot block. The number of hops 
referred to in the tables is the number of messages in the critical path of the protocol. 
As observed in the tables, eager combining may employ more messages than the DASH 
protocol when making a transition from read-shared to modified or modified to read- 
shared, because hot data blocks are sent to servers whether or not the servers use the 
data, and both the servers and clients must be kept consistent. These extra messages 
are unlikely to be a serious problem however, since we expect hot data blocks to be 
accessed by most processors (including the servers), and the extra messages required 
to replicate data to servers can be overlapped under any consistency model. Also, it 
is not necessary to wait for invalidation acknowledgements if sequential consistency is 
not required. Therefore, under a relaxed consistency model, eager combining does not 
impose significantly greater communication latency than the DASH protocol. As shown 
by the number of hops in the critical path in tables 2.5 and 2.6, eager combining and 
DASH require roughly the same number of hops for each state transition, under the 
assumption that each server actually requires the data it provides to its clients. 

It may seem that replicating cache lines in a large number of servers consumes an 
excessive amount of cache space, but this is not so. Assuming an even distribution 
of servers throughout the machine, the maximum additional cache space needed per 
processor is HotDataSize * NumServers / NumProcs, where HotDataSize is the size of 
the hot data, NumServers is the number of servers per hot cache block, and NumProcs 
is the number of processors in the machine.  This is a worst-case analysis however; in 

2The home node must invalidate the previous owner since the identity of this owner is unknown to 
the servers. 
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Protocol Tot Messages Num Hops 
EC 
DASH 

S + 5 
4 

4 
3 

Table 2.6: Messages transferred in sharing actions (modified to read-shared). 

practice, a server need only store the hot data currently being referenced by clients. 
In addition, under the assumption that servers are also clients for hot data, then each 
server needs a copy of the data anyway. Furthermore, the extra cache space devoted to 
copies of hot data in servers is a small percentage of the cache space devoted to caching 
application data. In short, the space overhead of servers is not an impediment to data 
replication as used in eager combining. 

Eager combining also requires additional "directory" space for servers to keep track 
of clients. This extra space amounts to a vector of NumProcs / NumServers bits per 
cache block, in which each bit represents a client sharing the block. We believe that 
this overhead is justified by the performance advantages of the protocol, which will be 
demonstrated in the next section. 

2.4    Performance Evaluation 

In this section we evaluate the eager combining protocol. In our simulations of eager 
combining, requests are rejected (and must be reissued) when the producer's memory 
module is busy. 

2.4.1     Comparison with DASH Protocol 

In the experiments described in this section, we consider balanced architectures, where 
the memory and (uni-directional) network bandwidth are equivalent. Tables 2.7 and 
2.8 present the running time of the applications (in millions of cycles) on machines 
with the DASH coherence protocol (rt), eager combining (ECrt), and the idealized, 
contention-free machine (cfrt) on 64 and 128 processors, respectively. 

On the 64-processor machine we use 4 servers per cache block; we use 8 servers per 
cache block on the 128-processor machine. All the simulations assume release consis- 
tency. 

Table 2.7 shows that eager combining significantly improves the performance of all 
the applications on the low-bandwidth machine with 64 processors. The running time of 
Gaussian elimination, all-pairs, and simulated annealing is improved by a factor of 2-3. 
Transitive closure and matrix inversion also exhibit improved performance, although 
the gains are not as substantial. 

Substantial improvements are also possible on the medium-bandwidth machine for 
these applications. The improvements are not as great on the high-bandwidth machine, 
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Application Bandwidth 
High Medium Low 

rt ECrt cfrt rt ECrt cfrt rt ECrt cfrt 
Gauss 9.0 7.6 6.9 19.0 8.9 7.4 37.9 13.3 8.0 
Matinv 65.8 62.4 58.1 76.1 67.4 59.7 99.9 80.5 63.4 
Tclosure 47.7 43.4 43.2 55.4 44.1 43.7 74.0 47.5 44.6 
All-pairs 43.6 29.1 25.5 62.3 34.3 27.1 102.0 48.5 30.2 

SA 12.3 8.9 9.6 16.3 9.2 9.8 21.5 9.7 10.3 

Table 2.7: Application performance on 64 processors 

Application Bandwidths 
High Medium Low 

rt ECrt cfrt rt ECrt cfrt rt ECrt cfrt 
Gauss 23.8 7.1 4.8 43.4 10.7 5.1 82.8 19.0 5.7 
Matinv 64.9 62.9 50.3 86.9 76.2 53.6 138.5 109.5 61.1 
Tclosure 43.2 23.8 23.6 64.6 26.0 24.0 115.2 34.3 24.9 
All-pairs 66.0 47.1 34.4 103.4 60.4 37.7 182.2 91.7 45.1 
SA 10.0 4.8 5.4 12.4 5.1 5.5 14.4 5.9 5.8 

Table 2.8: Application performance on 128 processors 
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but the running time under eager combining is close to that of the contention-free 
machine in most cases. In particular, transitive closure performs close to the optimal 
under eager combining on high- and medium-bandwidth machines, and is within 7% of 
optimal on the low-bandwidth machine. 

Simulated annealing exhibits an anomaly: the running time under eager combining 
is better than the running time on the idealized, contention-free machine. Under eager 
combining, writes (including invalidations) take longer to perform. Thus, processors 
incur many fewer misses on accesses to the global solution under eager combining. 
Since the program executes for a fixed number of iterations, the change in the number 
of misses produces an improvement in running time, even though it may adversely affect 
the search. 

The performance improvement under eager combining is even greater on 128 pro- 
cessors, as shown in table 2.8. Eager combining improves the running time of Gaussian 
elimination by a factor of 4 on all the machines. Other applications are improved by a 
factor of 2-3 in most cases. Once again, the running time of transitive closure under ea- 
ger combining is very close to the optimal running time on an idealized, contention-free 
machine. 

The performance improvements under eager combining are due to an increase in the 
effective network and memory bandwidth of the machine. Without eager combining, 
long queues can develop both at the network interface and at the memory. The running 
time under eager combining on a low-bandwidth machine (91.7M cycles) is less than 
the running time without eager combining on the medium-bandwidth machine (103.4M 
cycles). The other applications based on locks (Gaussian elimination, transitive closure, 
and simulated annealing) all run faster under eager combining and low bandwidth than 
on a machine with high bandwidth and no eager combining. In effect, eager combining 
multiplies the bandwidth of the multiprocessor by a factor of 2-4 by distributing requests 
more uniformly in the machine. 

Some observations are common to the two tables. For example, the relative perfor- 
mance of eager combining improves in comparison to the standard DASH configurations 
as we decrease bandwidth. However, decreasing bandwidth also causes the performance 
of eager combining to worsen relative to the optimal running time on an idealized, 
contention-free machine. This trend simply indicates that the protocol has intrinsic 
coherence-maintenance costs, and that bandwidth is a scarce resource even under eager 
combining. 

By comparing the results in the two tables, we see that eager combining does not al- 
ways improve performance as we increase the number of processors. Even when speedup 
can be achieved in the absence of contention, as in the case of Gaussian elimination, 
eager combining may require more bandwidth than is available. On low-bandwidth 
machines with a large number of processors, both the producer's node and the servers 
may lack sufficient bandwidth to satisfy all requests. Adding more servers relieves the 
problem at the server nodes, but creates the need for more network bandwidth at the 
home node. These results suggest that eager combining on large-scale machines may 
require multi-level trees in order to reduce contention at the servers and home node, 
although doing so would increase the number of hops for references by clients. 
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Bandwidth Num Procs rt ECrt Brt cfrt 
High 64 

128 
9.0 
23.8 

7.6 
7.1 

10.4 
10.0 

6.9 
4.8 

Low 64 
128 

37.9 
82.8 

13.3 
19.0 

18.1 
21.8 

8.0 
5.7 

Table 2.9: Broadcasting vs eager combining for Gaussian elimination. 

2.4.2    Comparison with Broadcasting 

A common technique for alleviating contention caused by producer/consumer sharing 
is to use a form of software broadcasting. With combining trees [Yew et a/., 1987], 
processors are organized into a tree structure, in which each processor requests the data 
from its parent node, with the producer at the root. Each parent node combines the 
requests of its children into a single request to its parent. Under this scheme, coherence 
is not guaranteed by the hardware, and the pattern of sharing between processors must 
be easily predictable. 

We implemented consumer-driven software broadcasting, wherein the producer sets 
a flag indicating when data is ready, and the consumers copy the data. In this imple- 
mentation multiple consumers can overlap time spent in the network, so many copy 
operations can proceed in parallel. Each tree node contains several broadcast buffers, 
which allows a parent node to continue producing data before its children consume the 
data. 

Our software broadcasting tree implements the same degree of fan-out at all levels 
in the tree, since the traffic generated at each level is the same. This is not true of 
eager combining, where the root node in the tree (the home node) must broadcast the 
data to the servers and satisfy any requests from clients that were forwarded by servers 
before they received the data. For this reason, the number of servers per block under 
eager combining is chosen so that each server has more clients than the home node has 
servers. Thus, for software broadcasting on a 64-processor machine, we use a two-level 
tree with a fan-out of 8; under eager combining we use 4 servers, each with 16 clients. 
For software broadcasting on a 128-processor machine, we use a two-level tree with a 
fan-out of 12; under eager combining we use 8 servers, each with 16 clients. 

We compared the running time of Gaussian elimination under eager combining and 
software broadcasting, while varying the network and memory bandwidth of the ma- 
chine. We simulated a machine with high network and memory bandwidth, and a 
machine with low network and memory bandwidth, since these machines represent the 
best and worst case for eager combining. Under software broadcasting we assume each 
memory module has a 16-entry queue; under eager combining, requests are rejected 
when the memory module is busy. The results of these experiments are presented in 
table 2.9. 

The table presents the running time of the application (in millions of cycles) on a 
machine using the DASH coherence protocol (rt), under eager combining (ECrt), under 
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software broadcasting (Brt), and on an idealized, contention-free machine (cfrt). As 
seen in the table, eager combining performs better than software broadcasting in these 
experiments. There are several reasons for this. Software broadcasting requires more 
computation, since processors must explicitly perform data copying. In addition, there 
is more synchronization overhead under software broadcasting, which must synchronize 
access to the buffers. Most importantly, in a broadcasting tree, a processor at the 
bottom of the tree cannot trigger a copy operation higher up in the tree; it must wait 
for its ancestor to copy the data, before it can copy the data. Under eager combining, 
a read operation by any client causes the data to be multicast to the servers, and also 
forwarded to the client; no processor is forced to wait for an ancestor in the tree. 

2.5     Summary 

In this chapter, we examined the performance implications of a non-uniform distribution 
of memory accesses caused by producer/consumer sharing of data. Using execution- 
driven simulation, we observed the effect of variations in memory and network band- 
width on performance. At all levels of bandwidth we considered, our application suite 
exhibited massive performance degradation on large-scale multiprocessors. Both mem- 
ory and link bandwidth are limiting factors for our applications. We observed that 
when memory bandwidth and the unidirectional network bandwidth are comparable 
(as in most "balanced architectures"), a serious bottleneck may develop at the network 
interface of the nodes. 

To address these bandwidth problems, we proposed the eager combining coherence 
protocol, which is designed to increase effective memory and network bandwidth. Our 
experimental results show that this protocol can achieve significant improvements in 
running time performance (as much as a 4-fold improvement), as a result of the increase 
in effective bandwidth. In some cases, programs running under eager combining achieve 
better performance than the same program on a machine with 4 times more absolute 
bandwidth. We also compared eager combining to software broadcasting, and showed 
that eager combining consistently outperforms software broadcasting on our application 
programs. 
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3     Reducing Contention with Software 
Interleaving 

Eager combining uses sophisticated hardware to alleviate the effects of a non-uniform 
distribution of memory accesses. Several other techniques, such as multi-stage in- 
terconnection networks with combining of memory references [Gottlieb et al., 1983; 
Pfister et al., 1985], interleaved memory [Pfister et al., 1985], and eager sharing [Wittie 
and Maples, 1989], also assume some form of special hardware support to tackle mem- 
ory contention. Although these techniques are known to reduce or eliminate memory 
contention, their associated hardware can be both complex and expensive, and may 
depend on particular properties of the interconnection network. Thus, general software 
solutions are an attractive alternative. 

Two software techniques for alleviating contention are software combining trees [Yew 
et al., 1987] and data replication. Software combining trees are analogous to hardware 
combining networks, and incorporate logarithmic broadcasting. We can also limit mem- 
ory contention by replicating data across multiple memory modules. By distributing 
the requests for data evenly among the copies, we can reduce or eliminate memory 
contention for the original copy. 

Each of the techniques described above is general enough to use in any program. 
However, our investigation of memory contention in programs for solving linear alge- 
bra and graph problems suggests that techniques devoted specifically to parallel matrix 
computations [Ortega and Romine, 1988] can also be very effective at alleviating con- 
tention. 

In this chapter, we evaluate the effectiveness of memory interleaving implemented 
in software. This technique is motivated by the observation that memory contention 
in matrix computations is typically caused by simultaneous access to a single row of 
the matrix by multiple processors. If matrices are allocated among memories by rows, 
simultaneous access to any part of a row requires that processors contend for a single 
memory module. Memory interleaving spreads memory accesses across several memory 
modules when multiple processors access a single row of the matrix. 

We seek to characterize the source and extent of memory contention in SPMD matrix 
computations, quantify the costs and benefits of software memory interleaving, and 
evaluate the tradeoffs between software interleaving and logarithmic broadcasting on 
large shared-memory multiprocessors. 
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In the following section we describe our simulation infrastructure and example ap- 
plication programs. Section 3.2 presents our simulation results quantifying the impact 
of memory contention on their performance. In section 3.3 we describe implementations 
of our example programs based on software interleaving and quantify the effect of our 
implementation on the latency of remote memory accesses and the running time of our 
applications. Our most important contributions are presented in section 3.4, where we 
analyze the costs and benefits of software interleaving, and compare its performance to 
both row-major allocation and logarithmic broadcasting. We summarize our results in 
section 3.5. 

3.1    Methodology and Workload 

We simulate a large-scale multiprocessor (up to 200 processors) based on a multi-stage 
interconnection network executing our example applications. Our simulations consist 
of two distinct steps: a trace collection process, and a trace analysis process. The 
trace-collection step uses Tango [Davis et a/., 1991] to simulate a multiprocessor with 
(infinite) write-back caches. The traces generated by Tango contain the data references 
that missed in the local cache of each processor, and all synchronization events. 

Our analyzer process takes as input an address trace produced by Tango, and sim- 
ulates execution of the references in the trace on a distributed shared memory mul- 
tiprocessor. The analyzer respects the synchronization behavior of the application as 
represented by the synchronization events contained in the trace. We simulate hardware 
barriers by allowing all synchronizing processors to leave a barrier at the same time. 
Lock and unlock operations introduce a short execution delay, 5 cycles. Synchronization 
events are not allowed to cause contention in our model, although they are critical in 
maintaining the relative timing of events during trace analysis. 

In our machine model, a memory module can process only one request at a time. 
Requests arriving when the module is busy are rejected and must be reissued. Our 
analyzer measures contention for memory at the page level; thus each 4KB page is 
treated as a separate memory module to which requests may be directed. We treat each 
page as a separate memory module so as to simulate an ideal page placement policy in 
which contention caused by simultaneous accesses to multiple pages does not occur. 

Our simulations assume a cache line size of 64 bytes, a fixed network latency of 
36 processor cycles, and local memory latency of 10 processor cycles per cache line. 
In the absence of contention, a remote memory request requires a request message, a 
reply message, and memory service time, or 82 cycles total. Each request rejected due 
to contention suffers a 72 cycle penalty, corresponding to an immediate re-issue of the 
request. Our assumption that network latency is fixed (i.e., there is no network con- 
tention) allows us to isolate the effects of memory contention from network contention. 
This assumption corresponds to a machine architecture where the network bandwidth 
per node is much larger than the memory bandwidth. In addition, including network 
contention in our simulations would assign some of the contention we observe to the 
network rather than the memory, but would not be likely to affect the tradeoffs we 
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Application Running Time 
50 procs 100 procs 200 procs 

Gaussian elim 
Matrix inversion 
Transitive closure 
All pairs 

7.4 
26.1 
21.7 
43.0 

8.5 
21.7 
12.3 
71.3 

15.6 
26.0 
9.0 

136.8 

Table 3.1: Running time (in millions of cycles) under row-major allocation. 

consider here. Our simulation parameters are somewhat optimistic. Throughout the 
chapter, we present results demonstrating the performance effect of changing each of 
our parameters. 

Our application workload consists four of the parallel programs we considered in 
the previous chapter: two linear algebra applications (Gaussian elimination and matrix 
inversion) and two graph algorithms (transitive closure and all-pairs shortest paths). 
The input to all the applications is a 512 X 512 matrix, except for all-pairs which 
takes a 400 X 400 matrix as input. Synchronization is implemented with locks in 
Gaussian elimination and transitive closure, while barrier synchronization is used for 
matrix inversion and all-pairs shortest paths. 

3.2     Effects and Source of Contention 

3.2.1     The Effects of Memory Contention 

Table 3.1 shows how memory contention affects the running time of our applications. 
For Gaussian elimination and all-pairs shortest paths, memory contention causes the 
running time to increase with an increase in processors. In fact, moving from 50 to 200 
processors increases the running time of these applications by a factor of 2-3, rather than 
cutting the running time by a factor of 4. The situation is not quite as bleak in the case 
of matrix inversion, where 100 processors perform slightly better than 50 processors; 
however, 200 processors perform no better than 50 processors. Transitive closure is 
the only program that benefits from an increase in processors, although doubling the 
number of processors from 50 to 100 only improves performance by a factor of 1.8, and 
multiplying the number of processors by 4 only improves performance by a factor of 
2.4. It is important to note that, for the inputs used in our simulations, these programs 
have good locality of reference and load balancing properties, and achieve good speedup 
when contention is not considered. Thus, for all of these programs, memory contention 
is the major obstacle to effective speedup. 

The effects of contention are magnified even more if we relax some of our optimistic 
assumptions. For example, if we double the memory latency to 20 processor cycles, the 
effect of contention is even more pronounced. On 200 processors, 92% of the misses 
in Gaussian elimination suffer contention (up from 84%), the average remote reference 
latency increases to 2910 cycles (up from 1546), and the running time increases to 28.8 
M cycles (up from 15.6 M cycles). Similarly, if we keep memory latency at 10 cycles and 
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reduce the cache line size to 32 bytes, then 90% of the misses in Gaussian elimination 
suffer contention, the average remote latency increases slightly to 1571 cycles, and the 
running time increases dramatically to 30.9 M cycles (since we have doubled the number 
of remote references). If we both double the memory latency and reduce the cache 
line size to 32 bytes, then the average remote latency increases to 2904 cycles, and 
the running time increases to 55.2 M cycles. These results suggest that under less 
optimistic (and perhaps more realistic) assumptions, memory contention is likely to be 
an extremely serious problem in the large-scale shared-memory machines we consider. 

3.2.2    The Source of Memory Contention 

From the results presented in the previous section, it is obvious that all of our ex- 
ample programs suffer from memory contention. Our hypothesis was that the major 
component of the performance degradation observed in our experiments was due to 
simultaneous access to a single row of the matrix, as opposed to accesses to a single 
element. We validated this hypothesis with a simple experiment in which we simulated 
Gaussian elimination on 50 processors, using a matrix that was allocated so that el- 
ements within the same row were placed in different pages. This allocation strategy 
reduced the average remote access latency from 164 cycles to 83 cycles, which is near 
optimal. This experiment confirms that the memory contention seen in our examples 
is due primarily to simultaneous access to the elements of a row, all of which reside in 
one memory module. 

We can also see from our examples that synchronization plays an important role 
in memory contention. All-pairs shortest paths experiences the worst contention by 
far, in part because our implementation uses barriers to implement the parallel loop. 
Transitive closure is similar in structure, but we used locks in its implementation. By 
using barriers in the all-pairs shortest paths program, we force all processes to access the 
same row at the same time on every iteration of the outermost loop, thereby increasing 
contention. To confirm the role of barrier synchronization as a root cause of memory 
contention in all-pairs shortest paths, we implemented the program using locks instead 
of barriers on 50 processors. The average latency of a remote memory access fell from 
2764 cycles to 247 cycles, and the running time decreased from 43M cycles to 14.4M 
cycles. It is clear from this experiment that barriers exacerbate the problem of memory 
contention. 

We conclude from these experiments that the major source of contention in our 
application programs is the synchronized access to the elements of a single row of the 
matrix, all of which reside in a single page (or memory module). Although relaxing syn- 
chronization constraints (by replacing barriers with locks) helps to reduce contention, we 
still observe substantial performance degradation due to contention in large-scale ma- 
chines. In the next section we consider an alternative data allocation strategy designed 
to address this problem. 
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ROW-MAJOR   ALLOCATION 

BLOCK 1 BLOCK 2 BLOCK 3 MEMORY MODULE P 

MEMORY MODULE P + 1 

SOFTWARE MEMORY INTERLEAVING   ALLOCATION 

ROW 1 ROW I + 1 

BLOCK 1 

BLOCK 2 

BLOCK 3 

MEMORY MODULE P 

MEMORY MODULE P +1 

MEMORY MODULE P + 2 

Figure 3.1: Software interleaving matrix allocation. 

3.3     Reducing Contention with Software Interleaving 

Our experiments in the previous section suggest that the main cause of memory con- 
tention in our example programs is the row-major allocation we used for matrices. 
Row-major allocation places an entire row of the matrix in a single page (or memory 
module), so that access to the row by multiple processors results in memory contention. 
Since none of our example programs access a matrix by columns, one obvious way to 
alleviate memory contention is to allocate the matrices in column-major order. That 
way, each element of a row resides in a different memory module. However, column- 
major allocation merely trades memory contention for additional cache misses (due to 
false sharing), and does not solve the performance problem. We require an allocation 
strategy that has the spatial locality properties of row-major allocation, and the mem- 
ory contention properties of column-major allocation. Software interleaving has both 
properties. 

3.3.1     Software Interleaving 

In software interleaving, we divide each row of the input matrix into cache blocks, and 
map the cache blocks of a single row into different memory modules. Figure 3.1 shows 
how matrices are allocated under software interleaving. 

Software interleaving is a specific instance of the more general data allocation strat- 
egy, referred to as block scattered decomposition [Dongarra et a/., 1992], in which the 
size of the block is determined by the architecture's cache line size. In effect, we use 
column-major allocation of cache blocks, rather than column-major allocation of el- 
ements. Since no cache block contains elements from multiple rows, we eliminate the 
additional cache misses due to false sharing in column-major allocation. Since the cache 
blocks of a single row map to different memory modules, no memory contention occurs 
when multiple processors simultaneously access different cache blocks of the same row. 
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Application Running Time 
50 procs 100 procs 200 procs 

Gaussian dim 
Matrix inversion 
Transitive closure 
All pairs 

7.7 
25.3 
21.3 
15.4 

4.5 
15.3 
11.8 
10.5 

2.96 
10.1 
6.4 
10.3 

Table 3.2: Running time (in millions of cycles) under software interleaving. 

Software interleaving can be implemented easily by the compiler, as it only requires 
the strip-mining loop transformation, and a slightly more complicated addressing of the 
interleaved data structures. A smart compiler can also determine whether or not to 
transform a program based on an analysis of its parallel loops. Note that software in- 
terleaving avoids modifying the allocation of work to processors and the synchronization 
determined by the original loop structure. 

Software interleaving has a tremendous effect on the average latency of remote ac- 
cesses observed by our sample parallel programs. For Gaussian elimination, the average 
remote access latency on 200 processors is 82 cycles, which is optimal. The results for 
transitive closure are also close to optimal. Average latency for matrix inversion under 
software interleaving increases slightly with an increase in processors, but still man- 
ages a 6-10 fold decrease in average latency when compared with row-major allocation. 
And even though all-pairs shortest paths still suffers from contention, which results in 
an average remote access latency of 366 cycles on 200 processors, software interleaving 
improves the average remote access latency by a factor of 18 to 33. 

This decrease in remote access latency produces a corresponding improvement in 
running time, as seen in Table 3.2. Under software interleaving, each of our applica- 
tions runs faster with an increase in processors. For Gaussian elimination and transitive 
closure, doubling the number of processors cuts the running time nearly in half. Addi- 
tional processors also improve the running time of matrix inversion, although not in the 
same proportion. Even all-pairs shortest paths continues to exhibit improved running 
time with an increase in processors, although the performance improvements offered by 
200 processors are insignificant. The speedup of matrix inversion and all-pairs shortest 
paths is limited by the use of barrier synchronization; too many processors waste cycles 
waiting for a barrier. 

Software interleaving is also effective at reducing contention under less optimistic 
assumptions than those used in the majority of our experiments. For example, even if we 
double the memory latency to 20 cycles, software interleaving eliminates most memory 
contention in Gaussian elimination. On 200 processors, only 0.78% of the misses suffer 
contention, the average latency of remote accesses is only 95 cycles, and the running 
time only increases by 15%. The same observation applies if we reduce the cache line 
size to 32 bytes. For Gaussian elimination on 200 processors with a cache line size of 32 
bytes, only 0.23% of the remote references suffer from contention, the average remote 
latency is 82 cycles, and the running time is only 4.0 M cycles. (By way of comparison, 
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Application Running Time 
RM-NC RM-C SI-NC SI-C 

Gaussian elim 2.4 15.6 2.7 3.0 
Matrix inversion 7.7 26.0 8.7 10.1 
Transitive closure 6.1 9.0 6.3 6.4 
All pairs 4.0 136.8 4.4 10.3 

Table 3.3:  Running time (in millions of cycles) with and without contention on 200 
processors. 

Gaussian elimination under row-major allocation takes 30.9 M cycles on 200 processors 
when the cache line size is 32 bytes.) If we both double the memory latency and reduce 
the cache line size to 32 bytes, then only 0.9% of the remote references suffer from 
contention, the average remote latency rises slightly to 98 cycles (where the minimum 
is now 92 cycles), and the running time increases to 4.7 M cycles. Thus, the enormous 
performance advantages of software interleaving are relatively insensitive to memory 
latency and cache line size. 

The conclusion that software interleaving can effectively eliminate the effects of 
contention holds even if we allocate multiple data rows to a memory module (rather 
than assign each row of the matrix to a separate page, and treat each page as a memory 
module). As long as consecutive rows are allocated in different memory modules, there 
is no significant contention for data within a memory module other than the contention 
measured in our simulations. 

As a final observation, we note that Gaussian elimination runs slightly faster on 50 
processors under row-major allocation than under software interleaving. In this case, 
the additional addressing costs of software interleaving outweigh the benefits associated 
with reducing memory contention. We will examine those costs in the next section. 

3.3.2    Overhead in Software Interleaving 

As we discussed earlier, software interleaving transforms the code by applying strip- 
mining to certain loops. The effect of strip-mining is to replace one loop with two, 
thereby increasing loop overhead. This overhead is not present when using row-major 
allocation, and therefore increases the running time of any program using software 
interleaving, unless offset by a reduction in memory contention. 

Table 3.3 illustrates the tradeoff between the overhead associated with software in- 
terleaving (SI) and the memory contention associated with row-major allocation (RM). 
In the table, the NC and C suffixes stand for "no contention" and "contention", re- 
spectively. In the absence of memory contention (that is, under the assumption that a 
memory module can satisfy any number of requests simultaneously), all of our programs 
execute 3-15% faster on 200 processors using row-major allocation, due to the overhead 
associated with software interleaving. When memory contention is included, software 
interleaving clearly dominates, improving performance by an order of magnitude in the 
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case of all-pairs shortest paths. Recall from Tables 3.1 and 3.2 that software interleav- 
ing performs significantly better on 50 processors only for those programs with a large 
amount of contention (matrix inversion and all-pairs shortest paths). For programs with 
lower contention levels, software interleaving performs either slightly better (transitive 
closure) or slightly worse (Gaussian elimination) than row-major allocation on 50 pro- 
cessors. These data suggest that it is not always obvious how to resolve the tradeoffs 
involved. In the next section we analyze these tradeoffs to determine the circumstances 
under which to use software interleaving. 

3.4     Determining When to Use Software Interleaving 

The previous section presented examples of the benefits of software interleaving, and 
mentioned some of the tradeoffs associated with the technique. This section develops 
analytical models that explain why software interleaving usually outperforms row-major 
allocation, and under what circumstances software interleaving outperforms logarithmic 
broadcasting. 

In each case, it is necessary to consider the two kinds of producer-consumer synchro- 
nization separately: barrier synchronization and lock synchronization. Under barrier 
synchronization, we assume that each task begins trying to access a new matrix row 
immediately after the barrier. This leads to a different analysis from lock synchroniza- 
tion, in which tasks access rows after a lock is set. Under lock synchronization, conflicts 
in accessing a matrix row are less frequent. 

The metric we will use in our comparison is the increase in running time over the 
optimal case, which has no memory contention and no additional instruction overhead. 
We measure the running time of the optimal case by simulating the simplest program 
(row-major allocation) on a system with infinite memory bandwidth (but nonzero mem- 
ory latency). 

Our purpose in performing these analyses is not to develop highly detailed models 
that can be used to predict the performance of programs. We focus instead on simple 
models that provide insight into reasons for preferring one technique over another, and 
that serve as a means of verifying our understanding of the tradeoffs involved. 

3.4.1     Modeling Software Interleaving and Row-Major Allocation 

For a given cache line size and matrix size, the loop overhead introduced by strip 
mining is a constant number of cycles. These cycles are distributed among the various 
processors, and therefore have a decreasing effect on running time as we increase the 
number of processors. The contention effects under software interleaving depend on 
the form of synchronization. If processes are loosely synchronized (as is the case when 
we use locks), then the overhead introduced by software interleaving is almost entirely 
attributed to loop overhead as follows: 

SI(P) = | + K, 
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Application Running Time 
50 procs 100 procs 200 procs 

Opt Gauss 
SI Gauss 

6.5 
7.7 

3.7 
4.5 

2.4 
3.0 

Opt All pairs 
SI All pairs 

12.4 
15.4 

6.7 
10.5 

4.0 
10.3 

Table 3.4: Running time of Gauss and All pairs (in millions of cycles) under software 
interleaving, compared to optimal. 

where L is the execution time of the additional instructions introduced by strip mining, 
and P is the number of processors (assuming good load balance). K\, which is typically 
small relative to L, represents the small amount of contention that still occurs under 
lock synchronization. We find that the quantity K\ is fixed for each of our programs. 

Software interleaving can suffer from memory contention when using barrier syn- 
chronization, but only for the first cache line of a row. Subsequent accesses to the same 
row are skewed by the serial access to the first cache line. The overhead of software 
interleaving in this case is: 

SI(P) = ^ + RTP 

where R is the number of rows in the matrix, and T is the transfer time of a cache line 
(82 cycles). 

As seen in Table 3.4, our experimental results agree with this analysis. For Gaus- 
sian elimination, we measure L as approximately 50M cycles and Ä'i as approximately 
300,000 cycles. For all-pairs shortest paths, we measure L as approximately 70M cy- 
cles; from the program, we know that R is 400, and as noted above, T = 82. These 
parameters result in good agreement with the data in all cases. 

In contrast, row-major allocation adds no additional loop overhead. However, it 
suffers serious contention under both barrier and lock synchronization. Under barrier 
synchronization, all processors contend for the entire row. Since all rows are eventually 
required by all processors, row-major allocation under barrier synchronization adds 
overhead equal to the cost of transferring the entire matrix, times P. This is because 
the last processor to receive a row will get it after P - 1 other row transfers have 
completed. Under barrier synchronization, all the other processors will be forced to 
wait for the last processor at the next barrier, so all are slowed equally. In other words: 

M 
RM{P) = —TP 

E 

where M is the number of elements in the entire matrix, and E is the number of elements 
per cache line. 

Under lock synchronization, contention occurs due to random conflicts between pro- 
cessors, as before. However, random conflicts are more common, since processors access 
a single module repeatedly while transferring a row, and the demand for a particular 
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Application Running Time 
50 procs 100 procs 200 procs 

Opt Gauss 
RM Gauss 

6.5 
7.4 

3.7 
8.5 

2.4 
15.6 

Opt All pairs 
RM All pairs 

12.4 
43.0 

6.7 
71.3 

4.0 
136.8 

Table 3.5: The running time of Gauss and All pairs (in millions of cycles) under row- 
major allocation, compared to optimal. 

row tends to be greatest immediately after it is produced. In fact, we can determine 
from the characteristics of our simulated machine that under row-major allocation, it 
only takes 8 processors transferring rows to saturate a memory module. Since the net- 
work trip lasts for 72 cycles, but the memory access itself only takes 10 cycles (which we 
will call service time), no more than 7 consecutive memory accesses can occur during a 
network trip. 

Beyond a certain number of processors, we can expect that at any point in time, 
at least one memory module is saturated. This observation holds because there are 
only a fixed number of memories in use; adding more processors adds to the number of 
requests sent to each memory. The delay caused by a memory module's saturation is 
eventually propagated to all processes, since each processor (in addition to consuming 
rows) is producing a row that eventually the other processors will need. 

Thus, although it is difficult to model the random contention for memory when the 
number of processors is small, we can provide an estimate of overhead when the number 
of processors is large. This estimate is based on the assumption that at any point in 
time, some module is saturated. We can then see that each additional processor adds an 
additional service time to the transfer of each cache line, since the additional processor 
will likely access the module while it is saturated. This means that each additional 
processor adds the cost of an entire matrix's memory service time, or 10 cycles times 
the number of cache lines in an entire matrix. So we estimate the overhead of row-major 
allocation, for large P, and lock synchronization, as: 

RM{P) 
M -^c(p-e) 

where C is the memory's service time (10 cycles), and 9 is the threshold number of 
processors beyond which the system shows memory saturation. 

As seen in Table 3.5, our experimental results for row-major allocation generally 
confirm our analysis. For all-pairs shortest paths, where M = 4002, our predictions are 
about 30% too high; however, these running times are extremely long and our model 
predicts them well enough for comparison purposes with software interleaving. For 
Gaussian elimination, we determine by inspecting the data that memory saturation is 
reached at about 40 processors, so 6 = 40; also, since pivot rows only constitute the 
upper half of the matrix in Gaussian elimination, M = 5122/2. Our model of overhead 
for lock synchronization is then quite accurate. 
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Figure 3.2:   Overhead of row-major allocation compared to software interleaving for 
barrier (left) and lock synchronization (right) 

Using this analysis, we can determine when the extra cost of software interleaving 
is worth paying in exchange for the reduction in contention that it provides. Figure 3.2 
shows plots of the analytic models developed above, for the cases of all-pairs shortest 
paths (on the left) and Gaussian elimination (on the right). The all-pairs graph shows 
that under the high contention costs of barrier synchronization, software interleaving 
is preferable even on as few as 10 processors. Beyond about 50 processors, the cost 
of software interleaving begins to rise, but at a slower rate than the cost of row-major 
allocation. This trend reflects the difference between contending for the first cache line 
of the row in the interleaving case, and contending for the entire row in the row-major 
case. 

The analytic models for lock synchronization in Gaussian elimination are plotted on 
the right side of Figure 3.2. Since contention under lock synchronization starts more 
slowly than under barriers, more processors are required before software interleaving is 
preferred over row-major, but the same basic effect is observed: beyond some number 
of processors (in this case about 50) software interleaving is always preferable. 

3.4.2     Comparing Software Interleaving and Logarithmic Broadcasting 

The previous section showed that, as the number of processors increases, eventually 
there comes a point when it is more profitable to use software interleaving over row- 
major allocation. However, to adequately assess when to use software interleaving, we 
must compare it to the best known software alternative: logarithmic broadcasting. 

We implemented two versions of broadcasting for the row-major Gaussian elimina- 
tion program. The two versions differ in terms of who drives the broadcast, the producer 
or the consumers of the data. As our consumer-driven implementation performed sig- 
nificantly better, it is the only one we will present results for. 

As pointed out in the last section, 8 processors reading a row can saturate a memory 
module when the memory latency is 10 cycles and the network latency is 72 cycles; 
however, as long as the number of processors contending is less than 8, each processor is 
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Application Running Time 
50 procs 100 procs 200 procs 

Opt Gauss 
Broad Gauss 

6.5 
7.4 

3.7 
4.7 

2.4 
3.4 

Opt All pairs 
Broad All pairs 

12.4 
15.9 

6.7 
10.3 

4.0 
7.8 

Table 3.6: The running time of Gauss and All pairs (in millions of cycles) under loga- 
rithmic broadcasting, compared to optimal. 

delayed only a small amount. Thus, in our simulated machine, logarithmic broadcasting 
should not use a tree of degree greater than 8. With this assumption, logarithmic 
broadcasting can completely eliminate contention when used with lock synchronization. 
This is because the condition in which some memory module is always saturated does not 
occur, as it did under simple row-major allocation. Memory modules do not saturate 
since the complete broadcast of each row is implemented using a much larger set of 
memory modules, and the number of processors accessing a single module will never be 
greater than the degree of the tree. 

For this reason we can estimate the cost of logarithmic broadcasting under lock syn- 
chronization as a constant, which is equal to the extra instructions and synchronization 
necessary to implement the technique. Thus, 

LB{P) = K2 

where I<2 depends on the specific program. Interestingly, in the programs we studied, 
K2 was significant; for example, in Gaussian elimination, Ki = 1.0M cycles. This occurs 
partly due to the synchronization needed to access broadcast buffers. Ideally each row 
would have a broadcast buffer on each processor, but that would require expanding the 
memory usage of the program by a factor of P, which is impractical. Since the amount 
of buffer space used for row broadcast on each processor must be bounded, buffer space 
must be re-used, which requires synchronization. 

In contrast, under barrier synchronization, the cost of logarithmic broadcasting is 
not independent of P. The broadcast of each row requires d steps, where d + 1 is the 
depth of the broadcast tree.1 For a tree of degree r, each step requires r row transfers. 
The first row causes a delay equal to its transfer time; the other rows cause a delay 
equal only to their memory service times (as discussed earlier in this section). Thus we 
can estimate the overhead of logarithmic broadcasting under barrier synchronization as: 

M M 
LB{P)=d-T + d(r-l)-C 

where d is proportional to flogr P]. 

'For a tree of degree r, the depth of the broadcast tree is roughly [log,. P], although details of how 
the tree is constructed can change this value by 1 in some cases. In all our experiments, d = 3. 
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Figure 3.3: Overhead of logarithmic broadcasting compared to software interleaving for 
lock (left) and barrier synchronization (right) 

In our experiments we held d equal to 3, while we varied r to attain the lowest 
possible value consistent with d = 3. For the 50 processor case, we set r = 4; for 
P = 100, r = 5; and for P = 200, r = 6. Table 3.6 shows the results of our experiments 
with All pairs and Gaussian elimination under logarithmic broadcasting, and compares 
them to their ideal cases. The table shows that K2 = 1.0M cycles is a good estimate of 
the constant overhead for Gaussian elimination under logarithmic broadcasting. It also 
shows that our estimate of the overhead due to logarithmic broadcasting under barriers 
in all-pairs shortest paths is fairly accurate. 

Figure 3.3 shows how the two techniques compare. The comparison for lock synchro- 
nization is on the left, while the comparison for barrier synchronization is on the right. 
For lock synchronization, beyond about 50 processors, software interleaving performs 
better than logarithmic broadcasting. This is because the fixed overhead under soft- 
ware interleaving is lower than that under logarithmic broadcasting. Since contention 
is much less severe under lock synchronization, the extra cycles required to implement 
logarithmic broadcasting are more expensive than necessary; software interleaving is 
preferable due to its simplicity. 

The situation is different for barrier synchronization, as shown on the right side of 
Figure 3.3. This figure shows the overhead of software interleaving compared to loga- 
rithmic broadcasting using a tree of fixed degree (equal to 5). The step-function nature 
of the logarithmic broadcasting curve is due to changes in the depth of the tree as the 
number of processors increases. The figure also shows an upper bound on logarith- 
mic broadcasting to show that as P grows large, logarithmic broadcasting eventually 
outperforms software interleaving everywhere. This figure shows that under barrier syn- 
chronization contention is so severe that the linearly increasing costs of accessing the 
first cache line in each row under software interleaving eventually grow larger than the 
logarithmically increasing costs of broadcast. 

Figure 3.3 shows that for large numbers of processors, logarithmic broadcasting is 
best when using barrier synchronization, but software interleaving is best when using 
lock synchronization.   It also shows that for small numbers of processors, the situa- 
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tion is reversed: software interleaving is best when using barrier synchronization, while 
logarithmic broadcasting is best when using lock synchronization. 

3.5     Summary 

In this chapter we used detailed simulations of application kernels to show that memory 
contention can substantially degrade the performance of SPMD computations on large- 
scale shared-memory multiprocessors based on multi-stage interconnection networks. 
We showed that under row-major allocation, memory contention is due to synchronized 
access to entire rows of a matrix, rather than simultaneous accesses to isolated data 
elements. We also showed that software interleaving dramatically reduces memory con- 
tention, and therefore performs much better than row-major allocation on large-scale 
machines. 

We analyzed the costs associated with software interleaving and logarithmic broad- 
casting, and showed how the choice between these two techniques for alleviating memory 
contention depends both on the type of synchronization used and the number of pro- 
cessors. For large numbers of processors, logarithmic broadcasting is best when using 
barrier synchronization, but software interleaving is best when using lock synchroniza- 
tion. For small numbers of processors, the situation is reversed: software interleaving 
is best when using barrier synchronization, while logarithmic broadcasting is best when 
using lock synchronization. Since the use of barrier synchronization exacerbates mem- 
ory contention, we conclude that software interleaving and lock-based synchronization 
is the most effective combination for reducing memory contention in SPMD matrix 
computations on large-scale machines. 
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4     Tolerating Remote Access Overhead 
with Large Cache Blocks 

Modern shared-memory multiprocessors use hardware caches to keep data close to the 
processors that need it, and thereby reduce the average cost of data accesses. The cache 
block size (that is, the size of coherence and fetching units) is an important design 
consideration affecting the performance of hardware caches. The choice of block size 
depends on the locality and sharing properties of applications, as well as the remote 
access latency and bandwidth of the machine. An application's reference behavior de- 
termines the relationship between the block size and the miss rate, while the bandwidth 
and latency of the machine determine the miss penalty associated with a particular 
block size, and the performance implications of changes in the miss rate. 

In this chapter we examine the effect of block size on the performance of parallel 
applications in scalable cache-coherent multiprocessors. We are motivated by the obser- 
vation that an increase in block size may produce a lower miss rate, while an increase 
in bandwidth lowers the miss penalty for large cache blocks. We would like to pinpoint 
the upper limits of this argument as it applies to real applications on machines of the 
foreseeable future. 

We first present, in section 4.1, an overview of the tradeoffs involved, including the 
relationship between block size, miss rate, and miss penalty. We also discuss related 
work that has examined the issue of block size and its effect on performance. 

We use detailed execution-driven simulation of parallel programs on a shared-memory 
machine to examine the relationship between cache block size and application perfor- 
mance as a function of bandwidth. Our simulation methodology, performance metrics, 
and application workload are described in detail in section 4.2. In section 4.3 we de- 
scribe the results of our simulations, which show that block sizes between 32 and 128 
bytes provide the best performance for our applications. Larger blocks usually result 
in an increase in the mean cost per reference, either because the miss rate increases 
(due to a variety of factors, including but not limited to an increase in false sharing), or 
because the improvement in the miss rate is not enough to offset the incremental cost 
of fetching larger blocks. 

In section 4.4 we consider whether improving the reference behavior of programs 
(so as to reduce miss rates) allows us to exploit larger cache blocks effectively. We 
describe modifications to programs in our application suite that significantly improve 
the miss rate, and use simulation to determine the optimal block size for these modified 
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programs. The results of these experiments show that improved locality (and a lower 
miss rate) does not necessarily lead to an increase in the effective block size. Even if, 
for a particular program, an improvement in locality allows us to exploit larger cache 
blocks, subsequent increases in block size are limited by the ever-decreasing benefits of 
successively larger blocks. 

Section 4.5 shows that the observations we made based on our experimental results 
hold under different assumptions about input and cache sizes. 

In section 4.6 we present an analytical model of mean cost per reference, and use 
it to explain and generalize our simulation results. In particular, we use the model to 
establish limits on effective increases in block size, and show why these limits apply 
even in cases where programs exhibit good locality and the architecture provides high 
remote access bandwidth. We also use our model to show that for the few applications 
that can effectively exploit very large cache blocks, the overall impact on performance is 
insignificant unless both the remote access latency and bandwidth are extremely high. 

We conclude, in section 4.7, that for most parallel applications, and for the levels 
of bandwidth and latency we can expect in the foreseeable future, there is little or no 
performance benefit to using very large cache blocks. 

4.1     Application and Architectural Issues Affecting Block 
Size 

Over the last decade there has been little consensus on the choice of block size for 
coherent caches on shared-memory multiprocessors. The Stanford DASH, MIT Alewife, 
and Silicon Graphics 4-D series machines all use 16-byte cache blocks. The Berkeley 
SPUR and NYU Ultracomputer used 32-byte blocks. The Kendall Square KSR-1 and 
the Stanford FLASH and VMP machines use 128-byte blocks. Paradigm [Cheriton et al, 
1991a] supports even longer cache blocks, up to 256 bytes. In part these choices reflect 
different implementations (e.g., hardware vs. software management of cache misses), 
but there is clearly a trend towards larger cache blocks for maintaining coherence across 
processors. Factors that influence the choice of cache block size fall into two categories 
[Lee et al, 1987]: (1) those that affect the miss rate of applications and (2) those that 
affect the cost of fetching a cache block. 

The spatial and processor (sharing) locality of applications determines how miss 
rates vary as a function of the block size. Applications with good spatial locality usually 
benefit from using larger cache blocks, since most of the data in a cache block is likely 
to be referenced before it is evicted or invalidated. In the absence of write sharing of 
data, an increase in the block size reduces the miss rate until the cache pollution point 
[Eggers and Katz, 1989]. At that point, useless data begins to replace useful data in 
the cache, thereby increasing the miss rate. 

The relationship between the cache block size and the miss rate has been studied 
extensively in the context of uniprocessors [Przybylski, 1990; Smith, 1987], but the miss 
rates of parallel programs do not always follow the same trends as sequential programs 
[Eggers and Katz, 1989].  Applications with good processor locality (i.e., coarse-grain 
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sharing) typically favor large cache blocks since, for these applications, the true sharing 
miss rate goes down with an increase in block size. Applications with poor processor 
locality (i.e., fine-grain sharing) usually favor small cache blocks, so as to avoid false 
sharing [Eggers and Jeremiassen, 1991], and to avoid bringing data into the cache that 
will be invalidated before referenced. 

In the best case (perfect spatial locality and coarse-grain sharing), doubling the size 
of cache blocks would cut the miss rate in half. Unfortunately, this best case scenario is 
extremely rare; increasing the block size typically causes more misses of one type while 
reducing the number of misses of another type. For example, if we classify misses as 
cold start, eviction, true sharing, false sharing, and exclusive request misses (caused by a 
write to read-shared data), then one can easily see that, as we increase the block size, the 
number of cold start misses never increases. The number of false sharing misses usually 
increases as we increase the block size, while the number of misses due to evictions, 
true sharing, and exclusive requests may decrease initially, but will eventually reach 
a minimum, and then is likely to increase. As a result of these conflicting trends, an 
increase in block size may or may not improve the miss rate, depending on the reference 
behavior of the application, and the structure and size of the cache. 

The choice of block size does not depend solely on the miss rates of applications; 
we must also consider architectural parameters. In particular, remote access latency 
and bandwidth are important factors, as they determine the cost of fetching a cache 
block.1 High remote access latency favors large cache blocks, since more data can be 
accessed with the same latency penalty. High remote access bandwidth also favors 
large cache blocks, since more data can be transferred for little extra cost. Large cache 
blocks can introduce network and memory contention problems however, since small 
packets generate less contention than large ones (assuming the same amount of data is 
transferred in both cases) [Agarwal, 1991]. Also, memory performance is affected by 
the block size; large blocks increase the memory busy time, thereby delaying contending 
processors. 

Increased network and memory bandwidth can reduce the cost of transferring large 
cache blocks, but do not change the dominant role of the miss rate. An increase in block 
size only improves performance when the larger blocks result in a lower miss rate. Even 
then, the decrease in the miss rate must be enough to offset the higher miss penalty 
associated with larger blocks. 

Several researchers have studied the impact of cache block size on the miss rate and 
overall message traffic on small-scale, bus-based multiprocessors. Agarwal and Gupta 
[Agarwal and Gupta, 1988] found that 4-byte cache blocks generated the least bus traffic 
for their application programs. Eggers and Katz [Eggers and Katz, 1989] showed that. 
for applications with good per-processor locality, increasing the block size from 4 bytes 
up to 32 bytes improves the miss rate. They also showed that the effect on bus utilization 

1 In this and the following chapters, we refer to the latency of the memory as the time it takes to 
deliver the first word of data from the memory. We refer to the latency of the network as the time it 
takes to transfer a single word of data from source to destination. We refer to the bandwidth of the 
network (or memory) as the number of bytes transferred per cycle after the first word is delivered. 
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depends on whether the improvement in the miss rate offsets the longer transfer time 
of larger blocks. 

The results of these studies on small-scale, bus-based machines do not apply to 
scalable, network-based machines, which incorporate very different costs. Although a 
shared bus offers less communication bandwidth per processor than a direct-connect 
network, bus-based machines typically have a lower remote memory access latency than 
network-based machines. Limited bandwidth argues for small cache blocks to avoid 
contention, while a lower remote access latency reduces the penalty for extra trans- 
actions associated with smaller cache blocks. In addition, the broadcasting capability 
of a shared bus reduces the cost of invalidations, which means that any reductions in 
invalidation traffic achieved with larger cache blocks are not as significant in bus-based 
machines as in network-based machines. 

In order to determine the feasibility of directory-based coherence schemes in network- 
based machines, Gupta and Weber [Gupta and Weber, 1992] studied the effect of the 
block size on the invalidation patterns of parallel programs. They found that data 
traffic goes up and coherence traffic comes down with an increase in block size, and that 
overall message traffic is minimized when the block size is 32 bytes. Since this study 
was mainly concerned with how changes in block size affect message traffic, it did not 
consider the corresponding effects on the miss rate or mean cost per reference, which 
have a more direct relationship to application running time. In addition, the argument 
in favor of 32-byte blocks is based on an assumption of limited bandwidth, since the 
negative effects of larger blocks are limited to an increase in the number of invalidations 
per write operation and increased message traffic. 

Lee et al [Lee et al, 1987] explored the performance effect of different cache block 
sizes as a function of network bandwidth, both in the presence and absence of explicit 
data prefetching. Their machine model assumes a multi-stage interconnection network, 
and a compiler-directed cache coherence scheme. They found that the optimal block 
size for multiprocessors is much smaller than for uniprocessors, and that explicit data 
prefetching encourages very small (4-byte) blocks. This study did not consider the 
dynamic sharing behavior of hardware cache coherence however, and therefore the per- 
formance of different cache block sizes on shared writable data could not be observed. 

Dubnicki [Dubnicki, 1993] explored the effect of changes in cache block size on the 
mean cost per reference as a function of latency and bandwidth. He showed that the 
range of block sizes that minimizes the mean cost per reference of an application suite 
shifts upward (within the range of block sizes considered) with an increase in network 
bandwidth. For the particular application suite studied, the range shifted from 16..256 
bytes at 20 MB/second to 64..256 bytes at 400 MB/second. 

Dubnicki's work used trace-driven simulation, with traces collected on an 8-processor 
machine. We would expect such small-scale parallelism to result in less sharing and 
better locality than we would see on a large-scale machine, thereby favoring larger 
cache blocks. Also, his study assumed infinite caches and did not consider the effects 
of network contention, again favoring larger blocks. Since this study did not consider 
blocks larger than 256 bytes, the cumulative effect of these assumptions cannot be 
measured; no upper bound on effective block size is shown by this work. 
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None of these earlier studies definitively addresses the issue of block size on scalable 
shared-memory machines. There are many complex factors (including the miss rate 
of applications, the cache size, and the latency and bandwidth of the machine), and 
previous studies either ignore one or more important factors, or assume a different 
architecture with very different costs. In addition, the results of earlier studies depend 
greatly on the application workload; specific results regarding block size would have to be 
reevaluated in light of programming systems and programming techniques that improve 
locality. Furthermore, no previous study has quantified the performance benefits of 
very large cache blocks for programs with excellent spatial locality and limited sharing, 
thereby establishing an upper limit on cache block size in multiprocessors. 

In this chapter we examine all of the important factors that influence the choice of 
block size, consider how improvements in locality affect this choice, and use an analytic 
model to generalize our results and to quantify the performance benefits of large cache 
blocks. 

4.2     Methodology and Workload 

4.2.1    Multiprocessor Simulation 

As in chapter 2, we use an on-line, execution-driven simulator that exploits a mixture 
of interpretation and native execution to simulate unmodified MIPS R3000 object code. 
We simulate events at the level of processor cycles; all simulation parameters and results 
are expressed in terms of processor cycles. Our event executor deals with all the major 
components of a parallel computing system: caches, the interconnection network, local 
memories, and directories. 

We simulate a scalable direct-connected multiprocessor with 64 nodes. Each node 
in the simulated machine contains a single processor, cache memory, local memory, di- 
rectory memory, and a network interface. Each processor has a 64 KB direct-mapped 
write-back cache. The cache block size is a parameter in our study. Caches are kept co- 
herent using an implementation of the DASH protocol with release consistency [Lenoski 
et al, 1990]. 

The simulator implements a full-map directory for controlling the state of each block 
of memory. Each node contains the directory for the memory associated with that node. 

Throughout this chapter we will again refer to the ensemble of addressable local 
memory and directory memory at each node as a "memory module." We simulate 
memory modules that queue requests (coming either from the cache or network inter- 
face) when the module is busy. Memory queues are assumed to be infinite. As should be 
the case for balanced architectures, we assume that the bandwidth of the memory mod- 
ule is equal to the unidirectional network link bandwidth (which is another parameter 
in our study). The latency of the memory module is 10 processor cycles. 

The characteristics of the practical interconnection networks we simulate are exactly 
the same as in chapter 2.   For comparison purposes, we also implement an idealized, 
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Level Path Width Latency/Switch Latency/Link Bi-dir Link Bwidth 
Infinite Infinite 2 cycles 1 cycle Infinite 
Very High 64 bits 2 cycles 1 cycle 1.6 GB/sec 
High 32 bits 2 cycles 1 cycle 800 MB/sec 
Medium 16 bits 2 cycles 1 cycle 400 MB/sec 
Low 8 bits 2 cycles 1 cycle 200 MB/sec 

Table 4.1: Network bandwidth levels used in simulated machine. 

Level Latency Cycles/Word Memory Bwidth 
Infinite 10 cycles 0 cycles Infinite 
Very High 10 cycles 0.5 cycles 800 MB/sec 
High 10 cycles 1 cycle 400 MB/sec 
Medium 10 cycles 2 cycles 200 MB/sec 
Low 10 cycles 4 cycles 100 MB/sec 

Table 4.2: Memory bandwidth levels used in simulated machine. 

infinite bandwidth network, in which the path width is always larger than the size of 
messages. 

Synchronization events do not generate memory or network traffic in our machine 
model, although they are used to maintain the relative timing of events. 

4.2.2 Performance Metrics 

For the most part our focus is on two different metrics: the miss rate and the mean 
cost per reference. The miss rate is computed solely with respect to shared references. 
That is, the miss rate is defined as the total number of misses on shared data divided by 
the total number of references to shared data. We classify misses using the algorithm 
described in [Dubois et ai, 1993] as extended in Appendix A. 

The mean cost per reference is defined as the number of each type of reference to 
shared data (hit or miss) times the average cost (a hit always takes 1 processor cycle to 
complete) divided by the total number of references to shared data. The mean cost per 
reference depends on the cost of remote accesses, which in turn depends on the latency 
and bandwidth of the machine. The levels of bandwidth we use are described in tables 
4.1 and 4.2 (based on 100 MHz clocks). As stated earlier, the memory bandwidth is the 
same as the unidirectional network bandwidth. 

4.2.3 Workload 

Our application workload consists of six parallel programs: Mp3d, Barnes-Hut, Mp3d2, 
Blocked LU, Gauss, and SOR. Mp3d is a wind-tunnel airflow simulation of 30000 par- 



43 

Application Shared Refs Shared Reads Shared Writes 
(% of shared refs) (% of shared refs) 

Mp3d 21.1 M 60% 40% 
Barnes-Hut 55.6 M 97% 3% 
Mp3d2 39.3 M 74% 26% 
Blocked LU 47.5 M 89% 11% 
Gauss 64.5 M 66% 34% 
SOR 20.7 M 85% 15% 

Table 4.3: Memory reference characteristics on 64 processors. 

tides for 20 steps. Barnes-Hut is an N-body application that simulates the evolution 
of 4K bodies under the influence of gravitational forces for 10 time steps. Mp3d and 
Barnes-Hut are part of the SPLASH suite [Singh et al, 1992]. Mp3d2 is a version of 
Mp3d restructured for better cache behavior, as described in [Cheriton et al, 1991b]. 
Mp3d2 and Mp3d use the same input. Blocked LU is an implementation of the blocked 
right-looking LU decomposition algorithm presented in [Dackland et al., 1992] on a 384 
X 384 matrix. Gauss is an unblocked implementation of Gaussian elimination that has 
been used in other studies, including [LeBlanc, 1988]. We use data replication in order 
to alleviate contention for pivot rows. The input to Gauss is a 400 X 400 matrix. SOR 
performs the successive over-relaxation of the temperature of a metal sheet represented 
by two 384 X 384 matrices. Table 4.3 summarizes the distribution of shared references 
in our applications on a 64-processor machine. 

As is the case with similar studies, simulation constraints prevent experimentation 
with "real life" input data sets. Simply reducing the input size to manageable levels 
without changing the cache size could produce unrealistic results however. Therefore 
the input data sizes used for our applications were chosen in tandem with our choice 
of cache size. We first determined input sizes that could be simulated in a reasonable 
amount of time, and then experimented with various cache sizes for those data sets. 
The cache size we ultimately selected as our default, 64 KB, was chosen so as to avoid 
too heavy an emphasis on replacement misses; this cache size is the smallest that holds 
the working set of processors for our applications. We do consider other cache and input 
sizes however, in order to understand the effect of these parameters on the miss rate 
and the mean cost per reference of our applications. 

4.3     Minimizing the Miss Rate and Mean Cost Per Ref- 
erence 

In this section we explore the effect of changes in block size on the miss rates and 
mean cost per reference (MCPR) of our application suite. We first use the miss rate 
to determine the optimal block size for an application under the assumption of infinite 
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Figure 4.1: Miss rate of Barnes-Hut. Figure 4.2: Miss rate of Gauss. 

bandwidth.   We then use the MCPR metric to determine the effect of remote access 
bandwidth and latency on the choice of block size. 

4.3.1     Effect of Block Size on the Miss Rate 

The block size that results in the minimum miss rate represents an upper bound on 
the size of cache blocks. Beyond this point, larger blocks simply increase the MCPR 
(and the running time of the application), regardless of the available bandwidth or the 
remote access latency. Given infinite bandwidth, the block size that minimizes the miss 
rate is optimal; smaller blocks incur larger penalties for transferring the same amount 
of data. 

Figures 4.1-4.6 present the miss rates for each of our applications as a function of 
block size. The percentage at the top of each column represents the percent of all 
references to shared data that result in a miss; within a column misses are classified as 
either eviction, cold start, exclusive request, true sharing, or false sharing misses. 

Figure 4.1 shows the miss behavior of Barnes-Hut. Even though the working set of a 
processor fits in its cache, the eviction miss rate is still a problem due to limited spatial 
locality and to the mapping of addresses in direct-mapped caches. The minimum miss 
rate occurs with 64-byte blocks; larger blocks increase the number of eviction and false 
sharing misses. The other categories of misses decrease with an increase in block size. 

Figure 4.2 shows the miss behavior of Gauss. With 4-byte blocks the miss rate is very 
high (34%), but repeatedly doubling the block size (up through 64 bytes) continually 
cuts the miss rate roughly in half. The minimum miss rate occurs when the block 
size is 256 bytes. These improvements in the miss rate are due to the excellent spatial 
and processor locality of the program. As with Barnes-Hut, the miss rate of Gauss is 
dominated by cache evictions. In particular, cache replacements (and exclusive requests) 
are responsible for the increase in the miss rate when moving from 256 to 512 byte 
blocks. The high eviction miss rate is due to poor temporal locality in accesses to the 
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Figure 4.3: Miss rate of Mp3d. Figure 4.4: Miss rate of Mp3d2. 
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Figure 4.5: Miss rate of Blocked LU. Figure 4.6: Miss rate of SDR. 



46 

main matrix; each processor repeatedly references a large portion of the matrix for each 
row it is updating. 

As seen in figure 4.3, Mp3d exhibits overall miss rate behavior similar to Gauss. For 
both programs increasing the block size between 4 and 256 bytes results in a decrease 
in the miss rate. The composition of the miss rate differs markedly between the two 
programs however. For Mp3d, false sharing is the limiting factor that precludes the use 
of 512-byte blocks. The miss rate is high regardless of block size, and in all cases is 
dominated by sharing-related misses. 

Although Mp3d2 is an improvement of Mp3d, the two programs have very different 
memory referencing and miss rate behaviors. As expected, the miss rates for Mp3d2 are 
much lower than the corresponding miss rates for Mp3d. It is surprising however that 
the optimal block size for Mp3d is larger than the optimal block size for Mp3d2 (256 
bytes instead of 64 bytes), even though Mp3d2 has much better locality of reference. 
In the case of Mp3d2, evictions dominate the miss rate, and the number of evictions 
increases with an increase in block size beyond 64 bytes. This example illustrates why 
even programs with good locality of reference may not be able to exploit large cache 
blocks. 

Figure 4.5 presents the miss rate behavior of Blocked LU. As in Mp3d, the sharing- 
related misses dominate the miss rate. For the first time we can see significant amounts 
of false sharing, which is introduced with 8-byte cache blocks and remains fairly constant 
with larger cache blocks. Despite the false sharing, the minimum miss rate is achieved 
with reasonably large cache blocks (128 or 256 bytes). 

SOR (figure 4.6) is interesting in that increases in the block size do not have a 
significant effect on the miss rate, even though the miss rate is extremely high for small 
cache blocks. Miss rate improvements are limited by the fact that eviction and exclusive 
request misses are unaffected by increases in block size. The reason for this anomalous 
behavior is that SOR manipulates two matrices, where the memory size of each matrix 
is a multiple of the processor cache size. Since each processor modifies the same row 
indices in both matrices, rows from one matrix collide with the corresponding rows in 
the other matrix in the direct-mapped cache. In section 4.4 we describe the effects of 
modifications to SOR designed to eliminate this cache mapping problem. 

In summary, for the majority of our applications, the minimum miss rate is achieved 
by using cache blocks between 64 and 256 bytes in size. Miss rate improvements quickly 
decline as we approach the block size that minimizes the miss rate for an application. 
There is no single type of miss that produces an upper bound on cache block size: false 
sharing, true sharing, exclusive misses, and eviction misses are all significant contribu- 
tors to the miss rate of some applications and can limit improvements by either driving 
up the miss rate or remaining fairly constant as we increase the block size. Thus, we can 
conclude that for these applications, the largest block sizes used in current multiproces- 
sors represent an upper bound on block size; an increase in block size beyond 256 bytes 
will likely hurt multiprocessor performance regardless of the latency and bandwidth of 
the machine. 
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Figure 4.7: MCPR of Barnes-Hut. Figure 4.8: MCPR of Gauss. 

4.3.2    Effect of Block Size on the Mean Cost Per Reference 

In the absence of latency and bandwidth considerations, the miss rate of applications 
dictates the choice of block size. In practice however, the remote access latency and 
bandwidth also constrain the choice of block size. Thus, we cannot simply choose the 
block size that results in the lowest miss rate; we must consider whether any improve- 
ment in the miss rate that occurs with an increase in the block size offsets a correspond- 
ing increase in the miss penalty, which is dictated by the bandwidth and latency of the 
machine. We will examine this issue by considering how changes in the block size affect 
the MCPR. 

Figures 4.7-4.12 present the mean cost per reference for our applications, as a func- 
tion of the block size and the available (network and memory) bandwidth. For each 
application we only present data for the range of block sizes that results in the lowest 
MCPR. 

Figure 4.7 presents the MCPR for Barnes-Hut. Across a wide range of bandwidth 
levels, 32-byte cache blocks result in the lowest MCPR. Larger blocks offer competitive 
performance only at very high levels of bandwidth, even though 64-byte blocks produce 
the minimum miss rate. At the lowest level of bandwidth, the performance of 16-byte 
blocks is comparable to the performance of 32-byte blocks. These results suggest that 
the improvement in the miss rate that occurs when increasing the block size from 16 
to 32 bytes (5.8% down to 4.4%) is sufficient to offset the corresponding increase in the 
miss penalty even at very low bandwidth levels. On the other hand, the improvement in 
the miss rate that occurs when increasing the block size from 32 to 64 bytes (4.4% down 
to 4.2%) cannot offset the corresponding increase in the miss penalty, unless infinite 
bandwidth is available. 

The MCPR of Gauss (figure 4.8) and Barnes-Hut exhibit roughly the same behavior. 
In both cases, a single block size (128 bytes for Gauss vs. 32 bytes for Barnes-Hut) 
offers the best performance over a wide range of bandwidth levels.   Also, this block 
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size is not the one that minimizes the miss rate (256 bytes for Gauss vs. 64 bytes for 
Barnes-Hut). 

As seen in figure 4.9, three different block sizes perform best for Mp3d, depending on 
the available bandwidth. At low and medium bandwidth levels, 32-byte blocks perform 
best, which is quite surprising since the miss rate with 32-byte blocks is almost twice 
the miss rate with 256-byte blocks (19.1% vs. 9.8%). With high bandwidth, 64-byte 
cache blocks produce the lowest MCPR. At infinite bandwidth, larger blocks (128 and 
256 bytes) prevail. 

Figure 4.10 shows a similar trend for Mp3d2: small cache blocks (8 bytes) perform 
best with low bandwidth, slightly larger blocks (16 bytes) perform best with slightly 
higher bandwidth, and even larger blocks (64 bytes) perform best in all other cases. Also, 
for the first time, the block size that produces the minimum miss rate also produces 
the minimum MCPR for practical levels of bandwidth. The reason for this is that the 
optimal block size (64 bytes) improves the miss rate by 35% over the next smaller block 
size, which is enough to offset the higher miss penalty associated with the larger blocks. 
For the other applications the improvement in miss rate between the optimal block size 
and the next smaller block size is at most 10%, which in most cases is not enough to 
offset the higher miss penalty. 

The best cache block size for Blocked LU also depends on the available bandwidth. 
For machines with low or medium bandwidth, a block size as small as 16 bytes minimizes 
the MCPR (and therefore the running time), as seen in figure 4.11. For higher levels 
of bandwidth, the best performance is achieved with a block size of 32 bytes, which 
is much smaller than the block sizes that minimize the miss rate (128 and 256 bytes). 
Note that although 128-byte blocks and 256-byte blocks result in the same miss rate, 
the MCPR of 256-byte blocks is always higher, even under infinite bandwidth. In this 
particular case, program execution with the larger cache blocks results in more queueing 
at the memory modules, which significantly increases the miss service time. 

Under practical levels of bandwidth, given two block sizes that produce the same 
miss rate, we would expect the smaller block size to yield a lower MCPR, due to a 
lower miss penalty. Given infinite bandwidth we would expect the two block sizes to 
produce comparable MCPRs, except when a change in block size affects the interleaving 
of remote requests in such a way as to introduce or alleviate memory contention, with 
a corresponding impact on MCPR. 

As seen in figure 4.12, the best cache block size for SOR is small independently of 
the bandwidth available. For machines with low or medium bandwidth, 8-byte blocks 
perform best, while 16-byte blocks outperform the other block sizes for the other levels of 
practical bandwidth. The fact that the best-performing block sizes for SOR are relatively 
small is a result of minor fluctuations in miss rate not being able to compensate for the 
higher miss penalty associated with larger blocks. 

Summarizing the results in this section, we showed that several factors contribute 
to the miss rate of our applications, any one of which can limit effective increases in 
the block size. In addition, we showed that bandwidth limitations further constrain 
the size of cache blocks. For most of our applications, block sizes between 32 and 128 
bytes provide the best overall performance even under the assumption of relatively high 
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bandwidth. It is somewhat surprising that no amount of bandwidth suffices to justify 
blocks much larger than this. In the next section, we consider whether more carefully 

tuned application programs can exploit larger cache blocks. 

4.4     Increasing the Effective Block Size by Improving Lo- 
cality 

The results of the previous section suggest that many shared-memory programs cannot 
benefit from block sizes larger than 64 or 128 bytes. The question then becomes whether 
or not locality-enhancing techniques directed at reducing the impact and extent of the 
dominant class of cache misses in a program would allow for larger cache blocks to be 
used. In order to investigate this issue, we modified three programs in our application 

suite so as to alleviate the dominant source of misses in each program. 

The first program we modified is SOR. Recall that this program suffers from interfer- 

ence in the mapping of addresses to cache locations; a processor must frequently replace 
data in the cache, even though the size of its working set is smaller than the size of 
its cache. To remove this source of eviction misses in SOR we added padding between 
the two matrices used in the program, so as to ensure that no two rows accessed by a 
single processor map to overlapping sets of cache blocks. We call the resulting program 

Padded SOR. 

Figure 4.13 shows the miss rate for the modified program. As seen in the figure, our 
program modification completely eliminates evictions as a source of misses, and thereby 
dramatically improves the miss rate. As a side effect of reducing evictions, we also 
eliminated most of the exclusive request transactions required to regain ownership of 
evicted blocks. As a result, the number of exclusive request transactions is much lower 
and is now dependent on the block size. Together these effects lower the minimum miss 
rate from 43.8% to 0.1%, resulting in nearly perfect spatial locality and limited sharing 

for Padded SOR. 

For both SOR and Padded SOR, the minimum miss rate is achieved with 512-byte 
blocks. Nevertheless, as seen in figure 4.14, under most practical levels of bandwidth, 
512-byte blocks produce the lowest MCPR for Padded SOR, while 16-byte blocks produce 
the lowest MCPR for SOR. For Padded SOR, the substantial improvements in the miss 
rate that result from increasing the block size up to 512 bytes offset the corresponding 
increase in the miss penalty, whereas the relatively minor improvements in the miss 
rate of SOR offered by blocks larger than 16 bytes do not offset any increase in the miss 

penalty. 

Next, we modified Gauss to improve its temporal locality, and thereby reduce the 
number of eviction misses. We modified the program so that each processor reads a 
pivot row once, updates all of its local rows based on that pivot row, and then reads 
the next pivot row. The resulting program is called TGauss. 

By comparing the miss rates of Gauss (figure 4.2) and TGauss (figure 4.15) we 
can see that this modification is very successful at reducing the number of replacement 
misses. In addition, the overall miss rate of TGauss is a factor of 3 smaller than the miss 
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Figure 4.15: Miss rate of TGauss. Figure 4.16: MCPR of TGauss. 

rate of Gauss for most block sizes. It is therefore surprising to see that the minimum 
miss rate for TGauss occurs with 128-byte blocks, whereas the minimum miss rate for 
Gauss occurs with 256-byte blocks. The composition of misses is different for the two 
programs, although evictions are the driving force in the overall miss rate in both cases. 

Figure 4.16 shows that even though the upper limit on effective block size for TGauss 
is smaller than the upper limit for Gauss (128 vs. 256 bytes), both programs achieve 
their lowest MCPR with 128-byte cache blocks for all except the lowest level of band- 
width. Thus, in this case, a program modification that improves locality does not 
increase the size of cache blocks that can be utilized effectively. 

Our last program modification involves Blocked LU. Recall that the miss rate of this 
program is dominated by sharing-related misses for block sizes larger than 16 bytes. 
We modified Blocked LU to produce Ind Blocked LU, using indirection [Eggers and 
Jeremiassen, 1991] to reduce the number of true, false, and exclusive request misses. We 
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added one level of indirection to each access to shared data, and stored the shared data 
in separate memory regions. Although references to shared data require two memory 
accesses instead of one (one to read the pointer to the data, and the other to read the 
data), writes to different shared data locations reference different memory regions and 
therefore don't conflict. In order for Ind Blocked LU to execute faster than Blocked 
LU, the lower miss rate must more than compensate for the additional references (one 
of which, the reference to the pointer, is usually a cache hit). 

The miss behavior of Ind Blocked LU is shown in figure 4.17. As expected, the 
improvement in sharing-related misses is significant, although the number of cold start 
and eviction misses increases somewhat. The optimal block size is the same for both 
Blocked LU and Ind Blocked LU (128 bytes) however. Larger blocks increase the num- 
ber of evictions, and thereby cause the miss rate of Ind Blocked LU to go up. Evictions 
play a larger role in the miss rate of Ind Blocked LU because the use of pointers for 
indirection effectively increases the working set size of processors. 

The MCPR for this application is shown in figure 4.18. Once again, we see that 
the best block size depends on the available bandwidth. Given low bandwidth, 32-byte 
blocks outperform all others. For all other levels of bandwidth, 64-byte blocks perform 
best. Thus, for high levels of bandwidth Ind Blocked LU favors a larger block size (64 

bytes) than Blocked LU (32 bytes). 

In summary, we modified three of our programs so as to improve the miss rate 
with an eye towards increasing the block size. While all of our program modifications 
were successful at reducing the miss rate, the resulting improvement in locality did 
not always affect the choice of block size. In two cases (Padded SOR and Ind Blocked 
LU) the optimal block size (that is, the block size that results in the minimum miss 
rate) remained the same, while in the other case (TGauss) it actually shrank. The 
block size that produced the lowest MCPR remained unchanged in one case (TGauss), 
grew slightly in another case (Ind Blocked LU), and grew enormously in the third case 
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(Padded SOR). 

These examples clearly show that improvements in locality of reference may not 
translate to effective increases in block size. In fact, the miss rates of the modified 
programs are so small that there is little reason to believe that further improvements in 
locality could help justify larger cache blocks. In section 4.6 we use an analytical model 
of mean cost per reference to argue that the upper bound on effective block size exhibited 
by our programs is not likely to be exceeded by other application suites, including those 
exhibiting good locality and limited sharing. In the next section we consider variations 
in the cache size and input size simulation parameters, to see whether larger problem 
sizes or larger caches affect the miss rate in a way that would alter our conclusions about 
block size. 

4.5     Evaluating the Effect of Input and Cache Size 

In this section, we evaluate the effect of different input and cache sizes on the choice 
of block size for our application programs. We first explore input size variations, then 
cache size variations, and finally draw conclusions based on observations from both sets 
of experiments. 

4.5.1    Varying the Input Size 

In many applications, the input size has a direct impact on the miss rate. Increasing 
the size of the input could increase the replacement miss rate if the working sets become 
larger than the processor caches. Increasing the input size can also affect the the spatial 
locality and degree of sharing exhibited by applications, improving the miss rate in some 
cases. In order to assess the impact of input size on the miss rate, and thus on the choice 
of block size, we vary the input size for three of our applications: Barnes-Hut, Padded 
SOR, and TGauss. 

We consider three different input sizes for Barnes-Hut: 2K, 4K (the input size used 
earlier), and 8K bodies. The working sets associated with 2K and 4K bodies fit into 
our 64KB caches, while 8K bodies produce working sets much larger than the caches. 
Simulations with these different input sizes show that the overall miss rate behavior of 
Barnes-Hut is roughly the same across these input sizes, due to the dominating effect 
of replacement misses. Beyond 64-byte blocks, the replacement miss rate increases, 
while the combined effect of the other miss categories remains fairly constant. Since 
the overall miss rate behavior of Barnes-Hut does not change significantly as a function 
of the input sizes we consider, the MCPR trends we observed for this application are 
unchanged with variations in input size. 

In the case of Barnes-Hut, increasing the input size increases the replacement miss 
rate (due to an increase in the size of a processor's working set) without significantly 
improving the locality properties of the application. We expect further increases in 
input size to result in the same type of behavior. 
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Padded SOR represents a different class of applications, since an increase in input size 
does improve the spatial locality and degree of sharing of the program. Increasing the 
input size from a 384 X 384 matrix (the input size used earlier) to a 512 X 512 matrix 
increases the working set size from 24KB to 40KB. More importantly however, the 
minimum miss rate is achieved using 8KB cache blocks, as opposed to the 4KB blocks 
observed earlier. We also see a change in the MCPR results, where 1KB blocks now 
achieve the best performance (assuming high bandwidth). Further increases in input 
size are likely to result in corresponding increases in the effective block size. As we 
will show in the next section however, such increases in block size may not significantly 

improve the running time of the program. 

We considered three input sizes for TGauss: 600 x 600, 400 x 400 (the input size 

used earlier), and 200 x 200 matrices of floating point numbers. The working set sizes 
associated with these inputs vary from about 26KB down to about 4KB. Although in- 

creasing the input size does improve the spatial locality of TGauss, while still producing 
working sets that fit comfortably within the cache, our simulations show that the differ- 

ent input sizes result in very similar miss rate and MCPR behavior. Both the shape of 
the miss rate curve and the block size that minimizes the miss rate and MCPR remain 
unchanged. Once again, the increase in the replacement miss rate is not compensated 
by a decrease in the other types of misses (cold, exclusive request, and true sharing 
misses), and quickly dominates the overall miss rate behavior for the larger inputs. 

In summary, an increase in the input size may not result in an improvement in 
spatial locality or sharing behavior (as in the case of Barnes-Hut), in which case the 
choice of block size does not depend on the input size. In some cases (like Padded 
SOR and TGauss), an increase in the input size does improve the spatial locality and 
sharing behavior of the program. In such cases, and depending on the cache size, the 

replacement miss rate may dictate the choice of block size. 

4.5.2    Varying the Cache Size 

The cache size is an important factor in the choice of block size since, like the input size, 
it directly affects the miss rate of applications (the replacement miss rate in particular). 
While larger caches may reduce the replacement miss rate across a range of block sizes, 
it is unclear whether the block size at which the replacement miss rate begins to increase 
changes with cache size. 

In order to explore the effect of cache size on our results, we varied the cache size for 
Barnes-Hut, TGauss, and Ind Blocked LU, while maintaining the original input sizes. 
We observed that the larger the cache, the more likely that an improvement in the other 
types of misses masks an increase in the replacement miss rate. More generally, as we 
increase the ratio of the working set size to the cache size, either through an increase in 
the input size or a decrease in the cache size, we increase the dominance of replacement 
misses in the overall miss rate trend (as a function of block size). Nonetheless, for each 
of these applications, the block size at which both the replacement miss rate and the 
overall miss rate start to increase stays roughly the same, regardless of the cache size 
and its relationship to the working set size of applications. 
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All three applications exhibited this same effect; Ind Blocked LU is an illustrative 
example. When using a 32KB cache, the minimum miss rate is achieved with 64-byte 
blocks, because the increase in the number of replacement misses with 128-byte blocks 
is not offset by the decrease in the number of cold, exclusive request, and true sharing 
misses. However, with 64KB or 128KB caches, the minimum miss rate of Ind Blocked 
LU is achieved with 128-byte blocks, because the increase in the replacement miss rate 
is offset by a decrease in the other types of misses. Nevertheless, for each of these 
cache sizes, the overall miss rate behavior of Ind Blocked LU does not change enough 
to induce a change in the MCPR results we observed earlier. 

In summary, we observed two major effects due to variations in the input size and 
cache size. First, as a processor's working set grows much larger than its cache, the 
optimal block size usually decreases due to the greater influence of replacement misses 
on the overall miss rate. Second, the input size has a significant effect on the choice of 
block size for those applications that exhibit improved locality with larger inputs. For 
these applications, the block size producing the minimum miss rate may increase as we 
increase the input size. 

The most important point to note however, is that the trends we observed in our 
initial experiments, where relatively small cache blocks (up to 128 bytes in size) provided 
the best overall performance, were also observed for different input sizes and cache sizes. 
Any improvements in miss rate that derived from improved spatial and processor locality 
through larger input sizes or larger caches were quickly dominated by an increase in 
replacement misses for our applications. 

4.6     A Model of Mean Cost Per Memory Reference 

In this section, we present a simple model of MCPR in k-ary n-cube architectures based 
on AgarwaPs model of network communication [Agarwal, 1991]. Our model relates 
the miss rate of the application and the remote access latency and bandwidth of the 
multiprocessor. We first present the model and validate it by comparing the model's 
predictions to the results in the previous sections. We then use the model to determine 
the improvements in miss rate required to justify an increase in block size, and to 
examine the effect of remote access latency on MCPR and the choice of block size. 

4.6.1     The Model and Its Validation 

We make the following simplifying assumptions in our model: 

• Network links are bi-directional and there are no end-around connections. 

• Network messages have randomly chosen destinations. 

• The probability that a processor initiates a network transaction on any given cycle 
is uniform across processors. 
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• Remote requests are satisfied with two-party transactions. That is, a cache miss 
is satisfied by a single request/reply transaction between the requesting processor 
and the home node of the requested cache block; no other nodes are ever involved. 
This assumption is based on our experience with simulations of the DASH coher- 
ence protocol which show that two-party transactions dominate. 

We define the mean cost per reference to be the number of cache hits times the 
average cost of a hit plus the number of cache misses times the average miss service 
time. Thus, the mean cost per reference (MCPR) for a block of size b is: 

MCPRb = hbx Tb
h + mhxTh

m 

where hb is the hit rate with blocks of size b, T\ is the average time to service a cache 
hit (which we assume is 1 cycle), mj is the miss rate with blocks of size b, and Tm is the 
average miss service time for blocks of size b. To simplify our notation, we will omit the 
dependence of MCPR, the hit rate, the miss rate, and the service times on the block 
size in those cases where the block size is fixed. 

Tm depends on the time spent in the network, the time spent waiting in the memory 
queue, and the actual memory service time. More specifically, 

/ MS\      (T DS 
Tm = 2[LN+-—) + [LM + 

BN )     V BM 

where Ljy and LM are the average latency at the network and memory (including 
the average time waiting in the memory queue), BN and BM are the path widths 
(representing bandwidth) of the network and the memory, MS is the average message 
size, and DS is the average number of bytes provided per request by the memory 
modules. 

The average network latency can be calculated in two ways, depending on whether 
or not we model contention. In the absence of contention, 

■>N DxTs + {D- 1)7, 

where D is the average distance between source and destination, 7) is the message header 
delay per communication link, and Ts is the delay per switch node. With randomly 
chosen message destinations, D = nxkd for k-ary n-cubes. With bi-directional links and 
no end-around connections, kd, the average distance in a single dimension, is (k - |)/3 
[Agarwal, 1991]. 

In the presence of contention, the average network latency is 

LN^D T' + T* + 7W)       k\       [1+n 
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where p, the average channel utilization, is fi x ^p X kd/2; and fx, the probability of a 

network request on any given cycle from a processor, is (T +
2

flim\y For further details 
on the network contention model, see [Agarwal, 1991]. 

To verify the accuracy of the model, we compare the model's predictions to the 
detailed simulation results presented in the previous sections. We instantiate the model 
using data derived from simulations that assume infinite bandwidth. These simulations 
do not require a detailed cycle-by-cycle simulation of the network, and therefore can 
be used to provide inputs to the model easily. This approach assumes that the model 
parameters we collect from simulations with infinite bandwidth (such as the miss rate 
and the average communication distance) do not change significantly under variations 
in bandwidth; our experiences with the simulations described earlier suggest this is a 
valid assumption in most cases. 

To instantiate the model, we collect the following statistics from simulations with 
infinite bandwidth: the miss rate, the average size of network messages, the average 
service time of the memories (including queue delays), the average number of bytes 
provided by the memories per operation, and the average distance traveled by network 
messages. The other architectural parameters used in the simulations are kept constant 
at the values used earlier: 64 processors, mesh topology, minimum service time of 10 
cycles, and a delay per link and per switch node of 1 and 2 cycles, respectively. 

We use the statistics from our simulations with infinite bandwidth to instantiate the 
model and predict the MCPR for a variety of block sizes as a function of bandwidth. 
We can then compare the MCPR predicted by the model (M) to the MCPR produced 
via detailed simulations (S). Figures 4.19-4.22 present this comparison for some of our 
application programs. 

As seen in figure 4.19, the model accurately predicts the MCPR for Barnes-Hut 
over a range of block sizes and bandwidth levels. The MCPR predicted by the model is 
within 10% of the MCPR derived from the detailed simulations for all block sizes and 
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bandwidths shown in the figure. The model is just as accurate in predicting MCPR 
for mp3d2 (not shown), and is almost as accurate for Padded SOR (figure 4.20) and 
Gauss (not shown), except that the model predictions for Padded SDR with 16-byte 
cache blocks are 20-30% lower than the MCPRs produced via simulation. Given high 
bandwidth or small cache blocks the model is accurate for SOR (figure 4.21), mp3d (not 
shown), and Blocked LU (not shown), but is off by a factor of 2 or more when there 
is very low bandwidth and large cache blocks. Similarly, the model produces fairly 
accurate results for TGauss (figure 4.22) and Ind Blocked LU (not shown) with large 
blocks and high bandwidth, but the predictions for small blocks and low bandwidth are 
too low by a factor of 2 or 3. 

In those cases where the model and simulation results differ, the model fails to 
accurately account for network and memory contention. Contention may arise any time 
we have very low bandwidth, which explains why the errors in predictions for Gauss, 
SOR, and mp3d occur at low bandwidth levels. Contention may also arise when a non- 
uniform distribution of references results in a hot spot, as occurs in Blocked LU and Ind 
Blocked LU. Contention can be alleviated by high bandwidth, which explains why all of 
the predictions at high levels of bandwidth are fairly accurate. Contention may also be 
alleviated by large cache blocks, if the larger blocks cause a significant reduction in the 
miss rate (as in the case of Padded SOR and Gauss). On the other hand, larger cache 
blocks can cause more contention (i.e., SOR and Blocked LU) since network contention 
increases dramatically with an increase in average message size. 

Despite these limitations, the model is fairly accurate when predicting MCPR under 
high bandwidth, or when the program exhibits a uniform distribution of references. 
In the remainder of this section we will use the model to predict MCPR under high 
bandwidth levels. 
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4.6.2     Quantifying the Benefits of Large Cache Blocks 

In the previous sections we claimed that cache blocks larger than 128 bytes are not 
likely to improve application performance significantly. There are two main reasons for 
this: larger blocks can increase the miss rate due to sharing behavior or eviction misses, 
and larger blocks increase the miss penalty without necessarily reducing the number of 
misses significantly. We will now use our analytic model to show why very large cache 
blocks are unlikely to improve performance even when programs exhibit good locality 
and the architecture provides high remote access bandwidth. 

We assume that block sizes are a power of two. The evaluation metric we use is 
MCPR. Thus, we should increase (double) the block size from b to b X 2 only if the 
MCPR produced by using block size b x 2 is less than the MCPR produced by using 
block size b. Assuming that the time to service a cache hit is one cycle, the larger block 
size is preferable when the following holds: 

(1 - m2b) + m2b x Tlb < (1 - mb) + mbxTb
rr 

where ro; is the miss rate when the block size is of size i, and Tl
m is the time to service 

a miss for a block of size i. If we assume 

and if we also assume that b is large enough that the message headers are a small 
percentage of the bytes transferred, and that the proportion of exclusive request misses 
(in which no real data is transferred) with respect to the total number of misses is 
roughly maintained when doubling the block size, we can express T™ as follows: 

BN    )     V BM 

Doubling the block size improves the MCPR if the improvement in miss rate offsets the 
increase in miss penalty, which means that the following holds: 

/   /_     ,  2xMS\      / 2xDS\       \ 

mb[2(LN + 
MS\      (T DS\ 

Assuming the network and memories have comparable bandwidth (i.e, B^ = BM), this 
simplifies to 

2MS + DS + BN{2LN + LM - 1) 
m2b < AMS + 2DS + BN{2LN + LM - 1)mb' 

When the block size is small, the bandwidth and latency factors dominate, and this 
ratio is close to 1.   Thus, for small block sizes, we need relatively little improvement 
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in the miss rate to offset the higher miss penalty. As we increase the block size, both 
MS and DS also increase, and eventually dominate the other factors, at which point the 
ratio is roughly \. At that point, doubling the block size must cut the miss rate in half 
in order to lower the MCPR. 

Note that this estimate of the improvement in miss rate needed to justify the next 
larger block size is conservative, in that it does not take into account any contention 
caused by using the larger cache block size. To improve the MCPR, the miss rate might 
have to improve by even more than is suggested by our model. 

To illustrate the difficulty of justifying large blocks, consider an application with 
good locality of reference: Ind Blocked LU. Using the statistics collected via simulation 
under infinite bandwidth (and assuming the architecture is as specified by our simulation 
parameters), we find that in order to justify an increase in block size from 32 to 64 
bytes, the miss rate with 64-byte blocks (3.3%) must be no more than 0.88 times the 
miss rate with 32-byte blocks (4.3%). Since in this case the improvement in miss rate 
does compensate for the increase in the miss penalty (assuming high bandwidth), an 
increase in block size lowers the MCPR (as seen in figure 4.18). A further increase in 
block size to 128 bytes would not be worthwhile however, since the resulting miss rate 
(3.1%) is not low enough (2.7% or 0.82 times the miss rate with 64-byte blocks) to 
justify the increase in the miss penalty. 

Even programs with excellent locality may not be able to produce enough improve- 
ment in the miss rate to justify large cache blocks. For example, Padded SOR has 
excellent locality; the miss rate for Padded SOR decreases with an increase in block size 
up to 4K bytes. However, even though the miss rate with lK-byte blocks is very low 
(0.088%), and is 0.77 times the miss rate with 512-byte blocks (0.114%), it is not low 
enough; according to the model (and assuming high bandwidth) the ratio must be at 
most 0.57 to justify an increase in block size from 512 bytes to IK bytes. Thus, the 
model correctly predicts that the MCPR with 512-byte blocks is lower than the MCPR 
with lK-byte blocks, even though the miss rate with lK-byte blocks is lower. 

Figures 4.23-4.26 show the actual percentage improvement in miss rate as a function 
of block size compared to the percentage improvement required to offset the higher miss 
penalty predicted by the model under high bandwidth. These figures illustrate just how 
hard it is to justify large cache blocks. For Barnes-Hut there is a steady decrease in 
the percentage improvement in the miss rate as a function of block size, while a steady 
increase is required to justify large blocks (even under high bandwidth). The trends of 
ever smaller actual improvements in miss rate and ever larger required improvements 
eventually cross, even for programs with good spatial locality, such as Padded SOR and 
TGauss. The two lines cross at the point at which the improvement in the miss rate 
associated with larger blocks is not enough to offset the higher miss penalty. The 
crossover point for Barnes-Hut (32 bytes), Padded SOR (512 bytes), and TGauss (128 
bytes) all agree with our detailed simulations. 

Mp3d2 (figure 4.26) is an unusual case in that the percentage improvement in the 
miss rate gained by moving from 32 to 64 byte blocks is higher than the percentage 
improvement gained by moving from 16 to 32 byte blocks. Although the actual im- 
provement in the miss rate does not steadily decline, the required improvement does 
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steadily rise. Thus, an increase in block size from 8 to 16 bytes is justified, but an 
increase from 16 to 32 bytes is not. The largest block size for which the actual miss rate 
improvement is at least the improvement required is 64 bytes, which is consistent with 
our detailed simulations. 

In summary, the improvement in the miss rate required to offset an increase in miss 
penalty increases with the block size, but this improvement must come from an ever 
smaller miss rate. For practical levels of bandwidth and for most of our applications, the 
improvements in miss rate beyond 128-byte blocks are too small to offset the increase 
in miss penalty. 

4.6.3    Implications of High Network Latency 

As processor speeds continue to improve, and as we consider building larger and larger 
multiprocessors, we can expect remote access latency (in terms of processor cycles) to 
increase. Here we use our analytic model to examine the impact on MCPR of an increase 
in network latency. 

Throughout this chapter, we have assumed that network links impose a 1 cycle delay 
on each message, while switch nodes impose a 2-cycle delay. We will now consider four 
levels of network latency: low latency assumes delays of 0.5 and 1 cycle for the links 
and switch nodes respectively; medium latency is our original assumption for the delays; 
high latency assumes delays of 2 and 4 cycles respectively; very high latency assumes 
delays of 4 and 8 cycles respectively. Assuming infinite network and memory bandwidth, 
an average memory latency of 15 cycles, and an average message distance of 6 switch 
nodes, these latencies roughly correspond to an average remote access latency of 30, 50, 
90, and 160 cycles, when moving from low to very high latency. 

As a representative example of the effect of network latency on MCPR, consider 
Barnes-Hut with high or very high bandwidth. Recall that 64-byte blocks produce the 
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minimum miss rate for Barnes-Hut, while 32-byte blocks produce the lowest MCPR 
under our earlier assumptions. As seen in figures 4.27 and 4.28, network latency has a 
greater impact on MCPR when small cache blocks (8 or 16 bytes) are used, since the 
small blocks result in a higher miss rate for Barnes-Hut, and each extra miss suffers 
from an increase in network latency. Under high bandwidth, 32-byte blocks produce 
the lowest MCPR regardless of network latency, although the improvement over 64-byte 
blocks narrows with an increase in network latency. Under very high bandwidth, the 
improvement over 64-byte blocks is even smaller, and disappears completely at very 
high network latency. In fact, for Barnes-Hut under very high bandwidth, an increase 
in network latency from high to very high increases the best block size from 32 to 64 
bytes. 

Our model for MCPR can be used to explain why the small improvement in miss 
rate that results from moving to 64-byte cache blocks is enough to offset an increase 
in the miss penalty under very high bandwidth and very high network latency, but 
not under other circumstances. Figure 4.29 shows the improvement in miss rate for 
Barnes-Hut needed to justify an increase in block size for our four levels of network 
latency (assuming high bandwidth). Whatever the network latency, larger block sizes 
require greater incremental improvement in the miss rate. As seen in the figure, the 
higher the latency, the smaller the improvement in miss rate required to justify an 
increase in the block size. This confirms our intuition that large blocks are not as 
effective with low latency as with high latency, while the reverse is true for small blocks. 

Any trend in which network latency (expressed in processor cycles) continues to 
increase suggests a corresponding trend towards larger block sizes. The upper limit is 
dictated by the block size that produces the minimum miss rate, with limited bandwidth 
exerting downward pressure on the block size. Figures 4.30-4.32 illustrate the effects 
of these trends. Each figure shows the miss rate improvement actually achieved by 
an increase in block size for an application compared with the miss rate improvement 
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needed to justify an increase in block size under various combinations of latency and 
bandwidth. Under every combination of latency and bandwidth, Barnes-Hut (figure 
4.30) benefits from an increase in block size from 16 to 32 bytes. However, Barnes-Hut 
can exploit 64-byte blocks only on a machine with very high bandwidth and latency, 
and can never effectively exploit cache blocks larger than 64 bytes (which produce the 
minimum miss rate). Mp3d (figure 4.31) benefits from an increase in block size from 32 
to 64 bytes under every scenario of bandwidth and latency, and can effectively exploit a 
further increase to 128 bytes except for the case of low latency and high bandwidth. 256- 
byte blocks (which produce the minimum miss rate for Mp3d) are only useful under very 
high latency and bandwidth. 512-byte cache blocks are effective for Padded SOR (figure 
4.32) under all combinations of latency and bandwidth, but lK-byte blocks (which 
produce a lower miss rate) require very high latency and bandwidth to be effective. 
Given the trends in figure 4.32, even Padded SOR is unlikely to be able to effectively 
utilize cache blocks larger than IK bytes under most realistic scenarios. 

This conclusion holds even if we consider larger problem sizes. For example, if we 
increase the size of the problem matrix for Padded SOR from 384 X 384 to 512 x 512, 
we increase the working set size per processor from 24KB to 40KB. We also increase the 
block size that minimizes the miss rate from 4KB to 8KB. Nonetheless, the improvement 
in the miss rate beyond 512-byte blocks is so small that larger blocks do not result in a 
lower MCPR except in the case of very high latency and high bandwidth. 

4.6.4    Achievable Running Time Improvements 

The previous sections showed that the miss rate and MCPR of applications rarely 
improve with cache blocks larger than 128 bytes. However, there are a few programs 
that do exhibit consistent improvements in miss rate and MCPR as we increase the size 
of cache blocks. Those programs can be characterized by having extremely good spatial 
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locality and very limited sharing; a good example of this type of application is Padded 

SOR. 

We now show that, even for these well-performing applications, the effect of using 
larger blocks on running time is unlikely to be significant under most practical scenarios. 
The reason for this claim is that programs with very good locality usually exhibit miss 
rates so small that, beyond a certain point, any further reduction in the cost of memory 

accesses has negligible impact on execution time. 

Consider for example, the running time improvement achievable by Padded SOR. 
Figure 4.33 presents the maximum running time improvement possible for Padded SOR 
under different levels of memory access latency and assuming infinite bandwidth. "De- 
fault" corresponds to our original assumptions about memory and network latencies. 
The miss rate of Padded SOR on an input of size 384 X 384 is less than 0.12% when the 
block size is 512 bytes. Given such a small miss rate, the figure shows that it would take 
an extremely high latency in order for Padded SOR to achieve even a 5% improvement in 
running time beyond 512-byte blocks. Under lower latency assumptions, not even 256- 
byte blocks provide significant performance improvements, though this block size does 
cut the miss rate of 128-byte blocks roughly in half. Note that these results are very op- 
timistic, since our infinite bandwidth assumption eliminates any extra costs associated 
with the larger cache blocks. In practice, performance improvements would be much 
smaller than those shown in our figure, unless increases in block size are accompanied 

by matching increases in bandwidth. 

To summarize, the block size that minimizes the miss rate is the largest block size 
worth considering, but the best block size depends on the bandwidth and latency of the 
machine. Within the range bounded by the smallest possible block size and the block size 
that minimizes the miss rate, bandwidth limitations argue for a decrease in block size, 
while high latency argues for an increase in block size. If we assume dramatic increases 
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in both bandwidth and latency, then the best block size will approach the one that 
minimizes the miss rate, which is rarely larger than 256 bytes. Even if an application 
has sufficient locality that larger blocks reduce the miss rate, both the latency and 
bandwidth must be much greater than we will see in the near future if larger blocks are 

to improve application performance significantly. 

4.7    Summary 

In this chapter, we examined the relationship between cache block size and application 
performance as a function of remote access bandwidth and latency. Using execution- 
driven simulation, we explored the effects of bandwidth on the choice of block size for 
several parallel programs using the miss rate and mean cost per reference as the primary 
evaluation metrics. We observed that the reference behavior of applications is such that 
the block size that minimizes the miss rate usually falls between 64 and 256 bytes. 
Nevertheless, the block size that produces the lowest mean cost per reference (assuming 
network latency on the order of 100 cycles and relatively high network bandwidth) 
usually falls between 32 and 128 bytes. Even in those cases where larger blocks produce 
a lower miss rate, the incremental improvement in the miss rate due to an increase in 
block size is often not enough to offset the increase in miss penalty associated with 

larger blocks. 

We were surprised to see that program modifications designed to produce dramatic 
improvements in locality did not significantly alter our conclusions about block size. In 
two cases the block size that produced the minimum miss rate remained the same, while 
in a third case it actually got smaller. The block size that produced the lowest MCPR 
remained the same in one case, and grew only slightly in another case. 

Using an analytical model of mean cost per reference, we showed that the percentage 

improvement in the miss rate required to offset an increase in miss penalty increases 
with the block size, but this improvement must come from an ever smaller miss rate. 
Although less improvement is required for higher latency, the actual improvement in 
the miss rate gained by doubling the block size steadily declines, while the improve- 
ment required to offset the miss penalty steadily rises. Our analysis suggests that for 
most practical levels of bandwidth and latency, and for most parallel applications, the 
improvements in miss rate beyond 128-byte blocks are too small to offset the increase 
in miss penalty. Our analytical model also shows that, although the few applications 
with excellent spatial locality and limited sharing may be able to exploit larger cache 
blocks, both the remote access latency and bandwidth must be much greater than we 
can expect in the foreseeable future for large cache blocks to improve performance signif- 
icantly. We conclude that larger blocks are justified only under extreme circumstances, 
such as when the remote access bandwidth and latency are both very high, and the 
majority of applications exhibit nearly perfect locality and very limited sharing. 
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5     Tolerating Remote Access Overhead 
with Cache-Miss-Initiated 
Prefetching 

Large cache blocks can be viewed as the simplest example of a data prefetching technique 
triggered by cache misses. In this chapter we study more sophisticated techniques in 
this class, cache-miss-initiated prefetching, and their ability to tolerate the overhead of 
remote memory accesses on scalable multiprocessors in the presence of high network 
and memory bandwidth. 

Just like any other prefetching strategy, cache-miss-initiated prefetching techniques 
are based on an ability to predict, in advance, which addresses an application will 
reference in the near future. If the predictions are wrong, then the cache is filled with 
data that will not be referenced soon, resulting in cache pollution. If data is prefetched 
too early, then it can become stale before it is referenced, requiring a refetch of the data 
and increasing coherence traffic. Prefetching techniques must balance the benefits of 
fetching data early with these increased costs. 

Two additional characteristics of cache-miss-initiated prefetching techniques are: (1) 
some cache misses are required, since misses provide the only opportunities for prefetch- 
ing and (2) a large amount of data must be transferred at each miss in order to prevent 
future misses. These two characteristics of cache-miss-initiated prefetching cause the 
data traffic of an application to become bursty, since there are fewer misses, but each 
miss prefetches lots of data. This bursty traffic can result in serious performance degra- 
dation, particularly in machines with limited communication or memory bandwidth. 
Thus, when considering aggressive cache-miss-initiated prefetching, there is an addi- 
tional tradeoff between lower miss rates and the potential for network and memory 
contention. 

In this chapter we use execution-driven simulation of parallel programs to evalu- 
ate these tradeoffs for scalable multiprocessors with high network bandwidth and la- 
tency. In particular, we consider the effect on application performance of three different 
cache-miss-initiated prefetching techniques: (1) large cache blocks, which fetch multiple 
addresses within a single block, (2) sequential prefetching, which fetches multiple con- 
secutive blocks, and (3) hybrid prefetching, a novel technique combining hardware and 
software support for stride-directed prefetching. 

Our results show that block sizes between 16 and 128 bytes provide the best per- 
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formance for our applications; larger blocks either increase the miss rate or incur an 
increase in the miss penalty that dominates any improvement in the miss rate. Our re- 
sults also show that sequential and hybrid prefetching perform better than prefetching 
via large cache blocks, and that hybrid prefetching performs at least as well as sequen- 
tial prefetching. In fact, hybrid prefetching can perform as well as software prefetching, 
given sufficient bandwidth and regular memory addressing. Based on these results, we 
conclude that among the cache-miss-initiated prefetching techniques we consider, hybrid 
prefetching is the only strategy that can offer significant performance improvements for 
scalable multiprocessors. 

The remainder of this chapter is organized as follows. In section 5.1 we describe 
sequential and hybrid prefetching in detail. In section 5.2 we describe our simulation 
methodology, performance metrics, and application workload. We present our experi- 
mental results in section 5.3, and a summary of our work in section 5.4. 

5.1     Overview of Cache-Miss-Initiated Prefetching Tech- 
niques 

In this section, we overview the tradeoffs involved in each of the cache-miss-initiated 
prefetching techniques we consider, except for large cache blocks. Refer to chapter 4 for 
a detailed analysis of the issues involved in the use of that technique. 

5.1.1     Sequential Prefetching 

Even when large cache blocks reduce the miss rate, their high miss penalty may actually 
hurt overall performance. One way to reduce the miss penalty, while still retaining the 
potential for lower miss rates, is to use sequential prefetching with small cache blocks. 
Under sequential prefetching, a read miss causes some number of successive blocks to 
be prefetched independently.1 Prefetches are only issued for blocks for which there are 
no pending operations, and which are not in the cache at the time of the miss. The 
processor can continue execution as soon as the block that caused the miss is loaded 
into the cache. In this way, the cost of prefetching other blocks can be overlapped with 
computation. 

In terms of the read miss rate, sequential prefetching has the potential to perform 
well for programs that benefit from large cache blocks (i.e., programs with good spatial 
locality and limited sharing). In contrast to large cache blocks, sequential prefetching 
is less likely to suffer from false sharing, since the coherence units are small. 

In the absence of false sharing, sequential prefetching generates more network trans- 
actions than large cache blocks, since several prefetch requests are required to load the 
data in a large cache block.  Each request can be serviced more rapidly however, and 

1 Write misses and requests for exclusive access to shared data could also prefetch additional blocks, 
but we do not consider these cases. Write buffers and relaxed consistency are sufficient to hide write 
latencies in most cases. 
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requests from different processors may get interleaved. This latter feature is particularly 
important under tight synchronization constraints. 

Although sequential prefetching has been studied extensively in the context of unipro- 
cessors (e.g. [Smith, 1978a]), the same is not true for multiprocessors. [Dahlgren et al, 
1993] compares the performance of sequential prefetching with an adaptive sequential 
prefetching technique for scalable multiprocessors. They also studied the performance 
of large cache blocks that fetch the same amount of data as the sequential prefetching 
strategy. Their results showed that adaptive prefetching performs at least as well as 
sequential prefetching, and that both strategies perform better than large cache blocks. 
This study assumed infinite network bandwidth however, and did not investigate how 
aggressively prefetches could be issued. In particular, their implementation of sequential 
prefetching only fetched a single extra block on a read miss. 

5.1.2    Hybrid Prefetching 

Both large cache blocks and sequential prefetching only work well for programs with 
very good spatial locality. Stride-directed prefetching [Fu and Patel, 1992], lookahead 
data prefetching [Baer and Chen, 1991], and [Palacharla and Kessler, 1994] are examples 
of prefetching techniques that attempt to deal with large strides in data accesses. 

Under stride-directed prefetching, a Stride Prediction Table (SPT) is used to store 
the last memory address referenced by an instruction. Strides are automatically com- 
puted by subtracting consecutive memory addresses referenced by an instruction. Once 
the stride of access for an instruction is computed, a prefetch of the next required 
memory block can be issued (provided that the stride is non-zero). 

Hybrid prefetching is similar to stride-directed prefetching in that both use a hard- 
ware table for storing stride-related information. Hybrid prefetching uses an instruc- 
tion/stride table (1ST) indexed by instruction address, where each entry contains the 
number of blocks to prefetch on a read miss and a stride between the blocks. On a read 
miss, the cache controller fetches the block that caused the miss and prefetches addi- 
tional blocks with a certain stride, as determined by the 1ST entry for the instruction. 
If the instruction has no corresponding entry in the 1ST, a single block (with stride 1) 
is prefetched on its behalf. 

Under hybrid prefetching, the compiler computes the stride of access for an instruc- 
tion and the number of blocks to prefetch on each cache miss, and generates code to 
fill in the 1ST. This code usually resides outside loops, and therefore the overhead of 
changing the table is negligible. 

There are several differences between stride-directed prefetching and hybrid prefetch- 
ing: 

• Under stride-directed prefetching, the strides are generated on-the-fiy using dy- 
namic reference information, while the stride information is generated by the com- 
piler under hybrid prefetching. 

• Stride-directed prefetching only prefetches one block, while hybrid prefetching 
allows several blocks to be fetched on a read miss. 
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• Under hybrid prefetching different instructions can prefetch a different number of 
blocks, while under stride-directed prefetching all instructions prefetch the same 
number of blocks. 

• The 1ST is managed by the compiler, so the table itself can be very small (i.e., 4 
or 8 entries). The SPT requires a separate entry for each prefetching instruction, 
and therefore must be very large (possibly on the order of IK entries). 

• The SPT resides on the processor chip; the 1ST resides outside the processor chip, 
since we only prefetch on cache (read) misses. Thus, under hybrid prefetching, the 
instruction address must be available outside the processor chip on a read miss. 

Like stride-directed prefetching, hybrid prefetching does not perform well with irreg- 
ular strides. Another drawback of hybrid prefetching is that it depends on the compiler 
being able to determine strides of access for the relevant instructions in the program. 
When this analysis is not possible for a particular instruction, hybrid prefetching must 
either default to a less sophisticated prefetching strategy (e.g., sequential prefetching) 
or simply avoid prefetching for that instruction. 

Hybrid prefetching is strictly more powerful than sequential prefetching, since the 
1ST can be programmed to prefetch blocks with unit stride. In fact, it is easy to 
resort to sequential prefetching whenever the stride cannot be determined at compile 
time. In addition, the number of blocks to prefetch on a miss can be varied on a per 
instruction basis. Hybrid prefetching also compares favorably against large cache blocks, 
since hybrid prefetching not only performs well for large regular access strides, but also 
reduces the miss penalty by handling small cache blocks. The main disadvantage of 
hybrid prefetching is that it requires additional hardware (i.e., the 1ST). 

The extent to which hybrid prefetching dominates other cache-miss-initiated tech- 
niques depends on the stride of access in parallel programs. Dahlgren and Stenstrom 
[Dahlgren and Stenstrom, 1995] found that, for their application suite, strides were of- 
ten shorter than blocks (assuming 32-byte blocks) and that stride prefetching was not 
worth its cost. This result does not imply that hybrid prefetching is bound to fail; in 
contrast with stride prefetching, hybrid prefetching has a very low hardware cost, does 
not need to delay prefetching until a stride is dynamically detected, and can behave 
exactly like sequential prefetching in cases where strides are short. In section 5.3, we 
describe the access patterns of our application suite, and evaluate the performance of 
each of the cache-miss-initiated prefetching strategies under varying assumptions about 
bandwidth. 

5.2     Methodology and Workload 

5.2.1     Multiprocessor Simulation 

We use the same simulation infrastructure used in chapters 2 and 4.   We simulate a 
scalable direct-connected multiprocessor with 32 nodes.  Once again, each node in the 
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Level Latency Cycles/Word Memory Bwidth 
Infinite 24 cycles 0 cycles Infinite 
High 24 cycles 0.5 cycles 800 MB/sec 
Medium 24 cycles 2 cycle 200 MB/sec 
Low 24 cycles 4 cycles 100 MB/sec 

Table 5.1: Memory bandwidth levels used in simulated machine. 

Level Path Width Lat/Switch Lat/Link Bi-dir Link Bwidth 
Infinite Infinite 5 cycles 1 cycle Infinite 
High 128 bits 5 cycles 1 cycle 3.2 GB/sec 
Medium 32 bits 5 cycles 1 cycle 800 MB/sec 
Low 16 bits 5 cycles 1 cycle 400 MB/sec 

Table 5.2: Network bandwidth levels used in simulated machine. 

simulated machine contains a single processor, cache memory, local memory, directory 
memory, and a network interface. The connection between these node components is 
clocked at half the speed of the processor. Each processor has a 16-entry write buffer 
and a 128 KB direct-mapped, lock-up free, write-back cache. The cache block size is 
a parameter in our study. Caches are kept coherent using an implementation of the 
DASH protocol with release consistency [Lenoski et a/., 1990]. 

As in previous chapters, the simulator implements a full-map directory for control- 
ling the state of each block of memory. Each node contains the directory for the memory 
associated with that node. In contrast with previous chapters however, here we assume 
that shared memory is interleaved among the nodes at a memory (cache) block granu- 
larity, i.e. consecutive blocks are assigned to successive nodes in round-robin fashion.2 

Memory modules queue requests (coming either from the cache or network interface) 
when the module is busy. Memory queues are assumed to be infinite. The latency of a 
memory module (the time it takes a memory module to deliver the first word of data) 
is 24 processor cycles. The memory transfer rates (after the latency cost) we use are 
described in table 5.1 (assuming 100 MHz clocks). 

The characteristics of the interconnection network we use in this chapter are exactly 
the same as described in chapter 4, except that switch nodes introduce a 5-cycle delay 
to the header of each message. The levels of network bandwidth we use are described 
in table 5.2 (again, assuming 100 MHz clocks). 

2This memory organization is used in other multiprocessors, including the BBN TC2000 [BBN, 1989]. 
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Application Shared Refs Shared Reads Shared Writes 
(% of shared refs) (% of shared refs) 

Barnes-Hut 54.7 M 98% 2% 
Gauss 64.5 M 67% 33% 
MMp3d 12.7 M 64% 36% 
Blocked LU 47.3 M 90% 10% 

Table 5 .3: Memory reference characteristics on 32 processors. 

5.2.2 Performance Metrics 

For the most part our focus is on three different metrics: the read miss rate, the memory 
access stall time per processor, and the running time of the application. We ignore write 
misses in most cases because we assume deep write buffers and release consistency, which 
serve to hide the cost of writes. The read miss rate is computed solely with respect to 
shared references. That is, the read miss rate is defined as the total number of read 
misses on shared data divided by the total number of reads to shared data. We classify 
misses using an extension of the algorithm in [Dubois et al, 1993] as described in 
Appendix A. 

The memory access stall time (MAST) is defined as the total stall time experienced 
by all processors due to memory references (read misses and stalls caused by a full write 
buffer) divided by the number of processors. In most cases, read misses account for 
almost all of the stall time; unless stated otherwise, write overheads are negligible. 

Using running time as a metric accounts for all activities that occur during the 
simulated execution of a program. Accesses to code and private data are modeled as 
cache hits. 

5.2.3 Workload 

Our application workload consists of a subset of the parallel programs used in the 
previous chapter: Barnes-Hut, MHp3d, Blocked LU, and Gauss. Barnes-Hut simulates 
the evolution of 4K bodies for 4 time steps. MMp3d is an improved version of Mp3d and 
simulates 30000 particles for 20 time steps. In our modified implementation of Mp3d, 
particles are assigned to processors in such a way as to reduce sharing significantly. 
Blocked LU and Gauss run on the same inputs as in the previous chapter, 384 X 384 
and 400 x 400 random matrices, respectively. Table 5.3 summarizes the distribution of 
shared references in our applications on a 32-processor machine. 

5.3     Evaluating Prefetching Strategies 

In this section, we evaluate the performance of three cache-miss-initiated prefetching 
strategies.  We first explore the effect of large cache blocks on the read miss rate and 
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Figure 5.2: MAST of Barnes-Hut. 

the memory access stall time (MAST) of our application suite. We then investigate 
the effect of sequential prefetching and hybrid prefetching on the miss rate and MAST 
as we vary the number of blocks prefetched on a read miss. Finally, we examine the 
overall effect on running time of each of the cache-miss-initiated prefetching techniques, 
and compare them to software prefetching, which does not require misses to initiate 
prefetching. 

5.3.1     Large Cache Blocks 

Assuming that write buffers and release consistency can hide the cost of writes, then the 
block size that results in the minimum read miss rate represents an upper bound on the 
effective size of cache blocks. Larger blocks simply increase the MAST (and consequently 
the running time) of the application, regardless of the available bandwidth or the remote 
access latency. Given infinite bandwidth, the block size that minimizes the read miss 
rate is optimal in terms of the overall remote access cost; smaller blocks incur larger 
penalties for transferring the same amount of data. 

Our ability to hide the cost of writes depends on the block size however. Increasing 
the block size may increase the cost of write operations (and synchronization latency) 
due to the resulting higher degree of sharing. Thus, even under infinite bandwidth, the 
block size that minimizes the read miss rate may not produce the minimum stall time. 

Figures 5.1-5.8 present the read miss rates and MASTs for each of our applications 
as a function of cache block size. In the miss rate figures, the percentage at the top 
of each column represents the percent of all reads to shared data that result in a miss; 
within a column misses are classified as either eviction, cold start, true sharing, or false 
sharing misses. 

Figure 5.1 shows the read miss behavior of Barnes-Hut. Even though the working 
set of a processor fits in its cache, evictions are still a problem due to limited spatial 
locality and to the mapping of addresses in direct-mapped caches. The minimum read 
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miss rate occurs with 64-byte blocks; larger blocks increase the number of eviction 
misses (due to cache pollution) and false sharing misses. The other categories of misses 
decrease with an increase in block size. 

Although increasing the block size up to 64 bytes decreases the read miss rate, figure 
5.2 shows that the MAST is minimized with 16-byte blocks for most practical levels of 
bandwidth. The improvements in miss rate for larger blocks are not enough to justify 
the increased miss penalty. However, under infinite bandwidth 32, 64, and 128-byte 
blocks perform best; these block sizes offer the lowest read miss rate (around 2.1%) and 
comparable read miss penalties (around 105 cycles). 

Figure 5.3 shows the miss behavior of Gauss. As with Barnes-Hut, the miss rate of 
Gauss is dominated by cache evictions. Evictions in Gauss are caused by poor temporal 
locality among accesses to the main matrix; each processor repeatedly references a large 
portion of the matrix for each row it is updating. Repeatedly doubling the block size (up 
through 128 bytes) continually cuts the miss rate roughly in half. These improvements 
in the read miss rate are due to the excellent spatial and processor locality of the 
program. Beyond 128-byte blocks, the read miss rate improves much more slowly, with 
the minimum miss rate occurring when the block size is 512 bytes. Evictions and false 
sharing increase the read miss rate when increasing the block size beyond 512 bytes. 

Figure 5.4 demonstrates that increasing the block size to 128 bytes significantly 
reduces the MAST for Gauss, regardless of the available bandwidth. However, for the 
finite levels of bandwidth, increases in the block size beyond 128 bytes do not reduce 
the MAST, even though the read miss rate is minimized at 512-byte blocks. The read 
miss penalty for 512-byte blocks is simply too high: 1900, 980, and 320 processor cycles 
for low, medium, and high bandwidth levels, respectively. 512-byte blocks do perform 
best with infinite bandwidth, where a small reduction in miss rate is enough to offset a 
minor increase in miss penalty (to 120 cycles). 

As seen in figure 5.5, increasing the block size up to 128 bytes results in a decrease 
in the read miss rate of MMp3d.  Although this trend in the miss rate is similar to the 
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trends for Barnes-Hut and Gauss, the composition of the miss rate for MMp3d is markedly 
different. For MMp3d, the read miss rate is dominated by sharing-related misses instead 
of evictions. False sharing is the limiting factor that precludes the use of 256-byte 

blocks. 

Figure 5.6 presents the MAST of MMp3d. For the low and medium levels of band- 
width, performance suffers when using 128-byte blocks, even though this block size 
produces the minimum read miss rate. The improvement in read miss rate offered by 
128-byte blocks over 64-byte blocks does not offset the increase in the read miss penalty, 
particularly at lower levels of bandwidth, where miss penalties increase from 245 to 390 
cycles under medium bandwidth and from 380 to 690 cycles under low bandwidth. Even 
with high bandwidth, a fairly small block size (32 bytes) performs as well as, or better 

than, larger block sizes. 

In this case, the excessive memory access stall time produced by large blocks is due 

primarily to the failure of the write buffer to hide write costs. Large blocks result in 
more apparent sharing behavior, and hence a greater chance that a write operation will 

stall the processor. Thus, although writes account for only 10% of the stall time with 
128-byte blocks and medium bandwidth, they account for 25% of the stall time with 

512-byte blocks and medium bandwidth. 

Figure 5.7 presents the miss rate behavior of Blocked LU. As with MMp3d, sharing- 
related misses dominate the read miss rate when the block size is larger than 16 bytes. 
For the first time, we see significant amounts of false sharing introduced with relatively 
small cache blocks. Despite the false sharing, the minimum miss rate is achieved with 

large cache blocks (256 bytes). 

As seen in figure 5.8, Blocked LU and MMp3d have similar MAST behavior. That is, 
the block size that minimizes the read miss rate (256 bytes) performs much worse than 
smaller block sizes at the lower levels of bandwidth. Even under infinite bandwidth, 
most of the performance gains achievable by increasing the block size are captured by 

a fairly small cache block size (32 bytes). 

To see whether more carefully tuned application programs can exploit larger cache 
blocks, we modified Gauss to improve its temporal locality, and thereby reduce the 
number of eviction misses. We modified the program so that each processor reads a 
pivot row once, updates all of its local rows based on that pivot row, and then reads 

the next pivot row. The resulting program is called TGauss. 

By comparing the miss rates of Gauss (figure 5.3) and TGauss (figure 5.9) we can see 
that this modification is very successful at reducing the number of replacement misses. 
The overall read miss rate of TGauss is nearly a factor of 6 smaller than the read miss 
rate of Gauss for most block sizes. It is therefore surprising to see that the minimum 
read miss rate for TGauss occurs with 128 and 256-byte blocks, whereas the minimum 
read miss rate for Gauss occurs with 512-byte blocks. The composition of misses is 
different for the two programs, although evictions are the main driving force in the 

overall read miss rate in both cases. 

Although the upper limit on effective block size for TGauss is smaller than the upper 
limit for Gauss (128 vs.   512 bytes), both programs achieve their lowest MAST with 
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128-byte cache blocks in most cases. Thus, in this case, a program modification that 
significantly improves locality does not increase the size of cache blocks that can be 
utilized effectively. 

From these examples it is clear that several factors contribute to the read miss rate of 
applications, any one of which can limit effective increases in the block size. Bandwidth 
limitations further constrain the effective size of cache blocks. For our applications, 
block sizes between 16 and 128 bytes provide the best MAST under medium and low 
bandwidth, while block sizes between 32 and 256 bytes perform best with high band- 
width. Fairly small cache blocks (32 or 64 bytes) can achieve most of the performance 
benefits of larger blocks, even under infinite bandwidth, because larger blocks reduce 
the miss rate by only a marginal amount. Furthermore, improvements in locality of 
reference may not translate to effective increases in the block size. 

See chapter 4 for a complete and detailed analysis of the effect of block size on the 
miss rate and application performance. 

5.3.2    Sequential Prefetching 

In the previous section we saw that increasing the block size can drive up the miss 
rate or dramatically increase the miss penalty, which precludes the use of large cache 
blocks as an effective prefetching technique. In this section, we investigate whether 
sequential prefetching can do better, by alleviating the false sharing and high miss 
penalties associated with large blocks. Our investigation of sequential prefetching is 
based on three programs: TGauss, MMp3d, and Blocked LU. 

Figures 5.11-5.16 present the read miss rate (under infinite bandwidth) and the 
MAST of our three applications as a function of the load size (that is, the total number 
of bytes fetched and prefetched on a read miss) under sequential prefetching. We use 
32-byte cache blocks, and vary the number of blocks prefetched on a miss. 
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Figure 5.11 shows that sequential prefetching produces lower miss rates than large 
cache blocks for comparable load sizes. Under sequential prefetching the minimum read 
miss rate is only 0.10% (with a load size of 512 bytes), which is a factor of 3 smaller 
than the minimum read miss rate without sequential prefetching. Sequential prefetching 
performs better with the larger load sizes because it eliminates false sharing misses and 
reduces the eviction miss rate substantially. 

As seen in figure 5.12, sequential prefetching also produces lower stall times than 
large cache blocks, primarily due to a decrease in the read miss penalty. For example, 
under sequential prefetching, the read miss penalties for a load of size 128 bytes are 
220, 170, and 125 cycles for low, medium, and high bandwidth, respectively. The miss 
penalties for 128-byte cache blocks are 530, 310, and 160 cycles respectively. 

Figure 5.12 also shows that an increase in bandwidth allows more aggressive prefetch- 
ing. For example, under low bandwidth, 256 bytes is the largest load size that reduces 
the MAST, but 384 bytes can be effectively utilized given medium or high bandwidth. 

As seen in figure 5.13, the read miss rate of MMp3d is also reduced by sequential 
prefetching. The minimum read miss rate is reduced from 2.6% to 2.0%. This improve- 
ment in the miss rate is due almost entirely to fewer false sharing misses. 

Although larger load sizes reduce the read miss rate under sequential prefetching, 
figure 5.14 shows that these improvements in the miss rate may not translate to re- 
ductions in the stall time. At the lowest level of bandwidth, a load size of 32 bytes 
produces the lowest MAST. Higher bandwidth allows more aggressive prefetching (up 
to 96 bytes), but even infinite bandwidth cannot justify the use of 512-byte loads, even 
though this load size produces the lowest read miss rate. The problem with large load 
sizes for MMp3d is that the cost of writes begins to dominate performance; writes account 
for as much as 45% of the MAST with a 512-byte load size. 

Blocked LU exhibits the smallest improvement in read miss rates from sequential 
prefetching.   The minimum miss rate produced by sequential prefetching is only 13% 
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lower than the minimum miss rate achieved without sequential prefetching. Most of the 
improvement comes from a reduction in false sharing misses. 

Figure 5.16 shows that the MAST of Blocked LU is minimized with a load size of 
64 bytes at all levels of bandwidth. Once again, writes account for a large portion of 
the MAST, especially at the larger load sizes. For example, with a 512-byte load size 
and low bandwidth, writes account for 30% of the stall time. 

In summary, while aggressive sequential prefetching often improves the read miss 
rate of applications, it may not significantly reduce the stall time. In the particular 
case of programs with fine-grain sharing and lots of write operations (e.g., MMp3d), the 
minor improvements in the read miss penalty offered by aggressive prefetching may not 

compensate for a corresponding increase in the cost of writes. 

5.3.3    Hybrid Prefetching 

In this section, we investigate whether hybrid prefetching can improve on the perfor- 
mance of sequential prefetching. Hybrid prefetching has the potential to perform better, 
since it can prefetch with any fixed stride between blocks, while being selective about 
how aggressively to prefetch. In particular, the compiler may select aggressive prefetch- 
ing for instructions dominated by cold misses, while using more conservative prefetching 
strategies for instructions that reference data that exhibit fine-grained sharing. 

Our implementation of hybrid prefetching does not involve modifications to a real 
compiler. Instead, we collect the required stride information by profiling our programs 
during a simulation run. That is, we record a trace of the instructions with the highest 
miss rates and the addresses referenced by those instructions. For each instruction that 

generates a substantial number of misses, we process the trace to obtain the stride of 
access between every two consecutive references. We select the stride that occurs most 
frequently (and represents at least 25% of all references generated by the instruction) 
as the prefetching stride. Using this information, we manually instrument our programs 
with directives for modifying the instruction/stride table at run time. The number of 
blocks to prefetch is constant for all instructions (except in a few cases, where we limit 
prefetching to a single block due to fine-grain sharing), and we vary this number as one 

of the parameters for our study. 

The performance of hybrid prefetching is dictated in large part by the access stride 
(in terms of cache blocks) and sharing patterns of applications. Both Gauss and TGauss 
exhibit unit stride, since most of the references in their inner loops are to consecutive 
cache blocks. Thus, both sequential and hybrid prefetching can be effective for Gauss 
and TGauss. In MMp3d, accesses to consecutive particles and adjacent (along the x axis) 
space cells result in references to alternating cache blocks, since these data structures 
are padded to fill two cache blocks. For Blocked LU the most common stride of access is 
48 blocks, which is caused by accesses to columns in a matrix stored in row-major order. 
We would expect both MMp3d and Blocked LU to benefit from hybrid prefetching, since 
both of these programs have a significant fraction of references with a fixed, non-unit 
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stride. 3 For Barnes-Hut, the vast majority of accesses in the program have no regular 
stride, so this program is likely to pose serious problems for any prefetching strategy 
that depends on regular access patterns. 

The sharing behavior of MMp3d and Blocked LU is similar in that both programs 
exhibit fine-grain sharing; the miss rate of both applications is dominated by true and 
false sharing misses. In the case of MMp3d, most of the misses (40%) are the result of true 
sharing of the data structure representing the wind tunnel space (the cell array). For 
Blocked LU, most of the misses are caused by false sharing of data in the main matrix. 
As a result, our implementation of hybrid prefetching only prefetches one additional 
block when satisfying a read miss to either of these data structures. 

Figures 5.17-5.22 show the read miss rate and MAST of TGauss, MMp3d, and Blocked 
LU under hybrid prefetching. As expected, hybrid prefetching and sequential prefetching 
perform exactly the same for TGauss. For MMp3d hybrid prefetching produces slightly 
lower miss rates than sequential prefetching, and a much lower MAST with large load 
sizes. Hybrid prefetching offers the most improvement for Blocked LU, cutting the 
minimum read miss rate from 2.8% to 1%, and substantially reducing the minimum 
MAST achievable. 

By comparing figures 5.14 and 5.20 we observe that the MAST incurred by hybrid 
prefetching is relatively insensitive to load size, while the stall time incurred by sequen- 
tial prefetching increases dramatically with load size. Unlike hybrid prefetching, the 
stall time produced by aggressive sequential prefetching is heavily influenced by write 
buffer stalls. The main reason write stalls are kept under control in hybrid prefetch- 
ing is that we use a conservative prefetching strategy on the cell array in MMp3d, while 

As seen in the previous section, sequential prefetching with a load size of 64 bytes is not particularly 
effective for MMp3d, but prefetching with a load size of 96 bytes is effective. The explanation for this 
behavior is the dominant number of references to alternating cache blocks in MHp3d. In this case, 
prefetching one block (a load size of 64 bytes) does not help, but prefetching two blocks does help. 
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simultaneously using an aggressive strategy on other data structures. Although our con- 
servative strategy results in a slightly higher miss rate than would otherwise be possible 
with hybrid prefetching, it avoids the excessive stall time due to writes encountered 
under sequential prefetching. 

By comparing figures 5.16 and 5.22 we can see that hybrid prefetching not only avoids 
excessive stall time due to writes, it also reduces the minimum MAST for each level of 
bandwidth. For Blocked LU, the minimum MAST produced by sequential prefetching 
under low bandwidth is 13.5M cycles, while the minimum MAST under hybrid prefetch- 
ing is 10.9M cycles. Hybrid prefetching is even better under high bandwidth, decreasing 
the minimum MAST from 6.1M cycles to 3.2M cycles. In this case, the performance 
gap between hybrid and sequential prefetching increases with bandwidth, because higher 
bandwidth allows for more aggressive prefetching, which is beneficial (i.e., lowers the 
miss rate) in the case of hybrid prefetching, but not in the case of sequential prefetching 
(which can only benefit unit-stride accesses). Note that these improvements depend on 
a conservative implementation of hybrid prefetching for a select group of instructions; 
we only prefetch a single block on each read miss caused by any of five instructions, 
which together are responsible for 33% of the read misses in the program. 

Blocked LU is an example of a program that exploits both of the properties that dis- 
tinguish hybrid prefetching from sequential prefetching: a non-unit stride of access and 
a mixture of aggressive and conservative prefetching. The benefits of hybrid prefetching 
are limited however, because we avoid aggressive prefetching on five instructions that 
account for one third of the read misses. Perhaps by restructuring the program to re- 
duce sharing, we could use aggressive prefetching on all the instructions, and reduce 
stall time even more. 

To test this hypothesis, we modified Blocked LU to produce a new program called 
static blocked LU (SBlocked LU). In the modified program, each process works on a 
single set of data elements throughout its lifetime, rather than migrating among data 
elements in the interests of load balancing. Although SBlocked LU exhibits less sharing 
than Blocked LU, it does not keep all processors busy throughout the execution; on 
average, a processor drops out of the computation every three phases of the program. 

Figure 5.23 shows the read miss rates of SBlocked LU. The minimum read miss rate 
produced by hybrid prefetching is 0.39%, which is a factor of 7 improvement over 32-byte 
blocks, and a factor of 5 improvement over the minimum read miss rate produced by 
sequential prefetching. Most of the improvements in the miss rate come from reductions 
in true and false sharing. As expected, SBlocked LU has lower miss rates than Blocked 
LU; the lowest miss rate of SBlocked LU is a factor of 2.7 smaller than the lowest miss 
rate of Blocked LU. More importantly, the improvement in the miss rate offered by 
prefetching is dramatically higher for SBlocked LU, a factor of 7 vs. a factor of 3.4 for 
Blocked LU. 

Figure 5.24 shows the MAST of SBlocked LU as a function of the load size and 
available bandwidth. As seen in the figure, there is a significant drop in the cost of 
memory accesses as we increase the load size up to 96 bytes, beyond which the MAST 
performance improves very slowly. Nonetheless, hybrid prefetching performs much bet- 
ter than sequential prefetching, lowering the minimum MAST of sequential prefetching 
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Figure 5.24: MAST of SBlocked LU un- 
der hybrid prefetching. 

by 41% under low bandwidth, and 53% under high bandwidth. In contrast, hybrid 
prefetching lowered the minimum MAST of sequential prefetching for Blocked LU with 
low bandwidth by only 19%, and by 48% with high bandwidth. This example illustrates 
the enormous benefits of aggressive prefetching in the absence of fine-grain sharing. 

In summary, hybrid prefetching is comparable to sequential prefetching for programs 
with unit-stride access (such as TGauss), but offers additional opportunities for prefetch- 
ing for programs with large, regular stride accesses (such as SBlocked LU). By using a 
mixture of aggressive and conservative prefetching within a program, hybrid prefetch- 
ing can offer the benefits of prefetching for instructions with a regular access pattern, 
while avoiding prefetching on instructions that result in excessive sharing (as in MMp3d 
and Blocked LU). Since hybrid prefetching need not use the same load size on every 
instruction, it is better able to translate an increase in bandwidth to an increase in load 
size. As a result, the benefits of hybrid prefetching relative to sequential prefetching 
tend to increase with bandwidth. 

5.3.4    Comparison of Prefetching Techniques 

In this section we evaluate the success of cache-miss-initiated prefetching by examining 
the overall effect on running time of each technique. We also compare cache-miss- 
initiated prefetching with software prefetching [Callahan et al, 1991; Mowry et al., 
1992], which does not require misses to initiate prefetching. 

As with hybrid prefetching, we implemented software prefetching by hand. We use 
the miss rate information gathered for hybrid prefetching to determine the instructions 
that can benefit from prefetching. After identifying the most important instructions, 
we manually inserted prefetches so that data blocks are received just before they are 
required. In order to hide the latency of prefetching without generating substantial 
instruction execution overhead, we perform loop unrolling and splitting wherever nee- 
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Figure 5.25:   Running time of TGauss 
with low bandwidth. 
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Figure 5.26:   Running time of TGauss 
with high bandwidth. 

essary. Each prefetch instruction prefetches a single cache block in read mode; that is, 
we do not implement block and exclusive prefetches. 

Figures 5.25-5.32 present a comparison of the running time produced by each of the 
techniques under low and high bandwidth assumptions for each of our applications. In 
these figures each column represents a different prefetching technique: 32-byte blocks 
with no prefetching (32B), the best block size for a given program (i.e., the block size that 
produces the smallest running time) with no prefetching (BBS), sequential prefetching 
with the load size that produces the smallest running time (SP), hybrid prefetching with 
the load size that produces the smallest running time (HP), and software prefetching 
(SWP). The number on the top of each column is the running time ofthat technique as a 
percentage of the running time for the base case of 32-byte blocks with no prefetching. 
Within a column running time is broken into busy time, read stall time, write stall time, 
and synchronization overhead. 

Figure 5.25 shows the running time of TGauss with low bandwidth. As seen in the 
figure, sequential, hybrid, and software prefetching perform roughly the same for this 
program, improving its running time by about 20%. Using the best block size for this 
program (64 bytes) and no prefetching improves performance by only 8%. 

It is interesting to note that software prefetching has a slightly lower busy time 
than the other techniques, despite the need for prefetching instructions. The reason for 
this counter-intuitive behavior is that in our implementation of software prefetching we 
unrolled the main computational loop in TGauss several iterations more than a stan- 
dard compiler would have done. Without this aggressive unrolling, software prefetching 
introduces high instruction overhead. 

In terms of the read stall overhead, software prefetching performed slightly worse 
than sequential and hybrid prefetching since, at this level of bandwidth, more than 30CX 
of the prefetches issued under software prefetching are completed too late to avoid a 
miss. 
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Figure 5.26 shows running times for TGauss under high bandwidth. At this level 
of bandwidth, the best block size (128 bytes) performed almost as well as the other 
techniques. Software prefetching performs better in terms of read stall time under high 
bandwidth, where only 9% of the prefetches are received late. 

Figures 5.27 and 5.28 present running times for MMp3d under low and high bandwidth, 
respectively. In both figures we see that the cache-miss-initiated prefetching techniques 
are not successful at reducing the execution time significantly in comparison to the base 
architecture. Software prefetching, on the other hand, substantially improves running 
time (especially under low bandwidth), even though it increases the busy time. 

As seen in figures 5.29 and 5.30, both hybrid prefetching and software prefetching are 
able to improve the running time of Blocked LU in comparison to the other techniques. 
Software prefetching performs better regardless of bandwidth because our implemen- 
tation of hybrid prefetching is conservative on certain instructions. This conservative 
approach produces a higher read miss rate for hybrid prefetching (2.1% vs 1.6% at low 
bandwidth, and 1.5% vs 0.7% at high bandwidth). 

Finally, figures 5.31 and 5.32 show the running time of SBlocked LU for each of 
the techniques. As with Blocked LU, both hybrid and software prefetching perform 
much better than the other techniques. Since SBlocked LU admits more aggressive 
cache-miss-initiated prefetching, hybrid and software prefetching offer comparable per- 
formance. Large block sizes and sequential prefetching produce very limited perfor- 
mance improvements, whereas hybrid and software prefetching improve the execution 
time by 20% to 24%, depending on bandwidth. 

These results illustrate the circumstances under which cache-miss-initiated prefetch- 
ing is most effective. If programs exhibit a regular access pattern, then each miss can 
prefetch a lot of data, and avoid future misses. Among the cache-miss-initiated tech- 
niques, only hybrid prefetching can adapt to large stride access patterns, and can tailor 
the amount of data prefetched on a miss according to the sharing behavior of each in- 
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struction. In the best case, hybrid prefetching offers performance comparable to software 
prefetching, which need not wait for a miss before issuing prefetches. 

5.4    Summary 

In this chapter we used execution-driven simulation of parallel programs on a scalable 
cache-coherent machine to study the performance of three cache-miss-initiated prefetch- 
ing techniques: large cache blocks, sequential prefetching, and hybrid prefetching. Large 
cache blocks and sequential prefetching are well-known prefetching strategies. Hybrid 
prefetching is a novel technique combining hardware and software support for stride- 
directed prefetching. 

Our simulation results showed that large cache blocks rarely provide significant per- 
formance improvements; the incremental improvement in the miss rate gained by using 
larger blocks is simply too small to offset a corresponding increase in the miss penalty. 
Our results also showed that sequential prefetching improves on the performance of 
large cache blocks by alleviating false sharing and high miss penalties. A comparison 
of sequential and hybrid prefetching shows that the latter technique performs at least 
as well as the former, as it can prefetch with large strides between blocks, while being 
selective about how aggressively to do so. In fact, given sufficiently high bandwidth 
and regular memory addressing, hybrid prefetching can perform as well as software 
prefetching. We conclude that among the cache-miss-initiated prefetching techniques 
we consider, hybrid prefetching is the only technique that offers significant performance 
improvements for scalable multiprocessors. 
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6     Tolerating Remote Access Overhead 
with Update-Based Coherence 
Protocols 

The two previous chapters considered whether aggressive prefetching could significantly 
improve the performance of parallel applications in the presence of high network and 
memory bandwidth. In the same vein, this chapter considers whether high remote 
access bandwidth can significantly affect the tradeoff between update-based coherence 
protocols and their invalid ate-based counterparts on scalable multiprocessors. 

The cache coherence protocol determines how data is moved among the caches in the 
machine, ensuring that data is frequently found in the local cache, while preventing pro- 
cessors from using stale data. Under a write-update (WU) protocol [McCreight, 1984; 
Thacker and Stewart, 1987; Thacker et al., 1992], each time a processor writes shared 
data, the coherence protocol broadcasts the new value to every other processor caching 
that data. Under a write-invalidate (WI) protocol [Goodman, 1983; Papamarcos and 
Patel, 1984; Lenoski et al, 1990], a write to a shared cache block causes the coherence 
protocol to mark as invalid all other cached copies of the block. 

The advantage of WU is that each processor receives and stores the update as it 
occurs, thus preventing future cache misses when the new value is needed. This property 
is particularly helpful when many processors read the updated values between successive 
write operations to the data [Eggers and Katz, 1988]. The disadvantage of WU is that 
every write operation to shared data requires that updates be sent over the network, 
even if no processor accesses the data between successive writes. WI achieves superior 
performance when cache blocks are written many times by a single processor before 
being accessed by any other processor [Eggers and Katz, 1988]. In most cases, WI 
results in higher miss rates, but fewer communication operations. 

Previous studies comparing WI and WU protocols on bus-based machines have 
offered mixed results [Archibald and Baer, 1986; Eggers and Katz, 1988; Veenstra and 
Fowler, 1994b]. In general, the comparison depends on the relative cost of reads and 
writes, and the sharing patterns exhibited by programs. WI protocols are currently used 
in the vast majority of hardware-coherent systems however. Although the broadcast 
nature of a shared bus allows the coherence protocol to update many processors with 
a single transaction, WI still performs better than WU in most cases because (1) the 
communication bandwidth available per processor on these machines is usually very 
limited and is rapidly consumed by the excessive number of transactions produced by 
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WU and (2) the cost of an update transaction on the bus is roughly the same as the 
cost of rereading an invalidated cache block, and there are likely to be many more 

transactions under WU than under WI. 

Scalable, network-based machines offer a very different environment for comparing 

WU and WI. These machines may incorporate relaxed consistency and write buffers 
(which reduce the cost of writes), or may use page-based coherence [Bisiani and Rav- 
ishankar, 1990; Carter et al., 1991; Wilson and LaRowe, 1992] (which results in high 
latency and bandwidth requirements for page faults). 

Previous studies of scalable cache-coherent architectures [Dahlgren et al., 1994; 
Dahlgren and Stenstrom, 1994] have shown that update-based protocols, with some 
additional sophisticated hardware to reduce the amount of network traffic, can out- 
perform their invalidate-based counterparts. However, future scalable cache-coherent 
machines will likely have very high communication bandwidth and remote access la- 
tency. Under these architectural assumptions, one might expect a pure WU protocol to 
perform as well as more hardware-intensive (and therefore costly) implementations of 
the protocol, since the extra traffic associated with pure WU would not have a significant 

performance impact. 

Our evaluation of pure WU and WI protocols as a function of bandwidth and block 
size does not confirm this expectation, however. Detailed simulations of these two 
classes of protocol show that the excessive network traffic caused by update protocols 
significantly degrades performance, even with infinite bandwidth. We trace the poor 
performance of WU to a variety of factors that are independent of bandwidth, but 
are all related to an excessive number of updates. Motivated by this observation, we 
categorize the coherence traffic generated by a WU protocol to quantify the amount of 
update traffic necessary for correct execution. The results of this analysis show that, for 
most applications, more than 90% of all updates are useless. Our analysis also pinpoints 
the application characteristics responsible for useless update traffic. 

The dominance of useless traffic in our experiments led us to consider the extent to 
which techniques for improving the performance of WU protocols reduce useless traffic. 
We study several software and hardware techniques, such as hybrid invalidate/update 
protocols, a data re-mapping strategy, and coalescing write buffers. Although all the 
techniques we consider significantly reduce the useless traffic associated with update- 
based protocols, there is still the potential for further reductions in traffic. We suggest 
several directions for further eliminating useless traffic in update-based protocols. 

Our work differs from most previous studies on coherence protocols in that our main 
goal is not to determine whether to use WI or WU for a particular architecture; we use 
WI running time results simply as a basis for comparison. Rather, in the same vein as 
[Dubois et al., 1993], which examined useless misses in WI protocols, our main goals are 
to categorize updates in terms of their usefulness, and to compare techniques intended 
to improve the performance of WU protocols with respect to our categorization. 

Our work is similar to recent work by Dahlgren et al [Dahlgren et al., 1994; Dahlgren 
and Stenstrom, 1994] in that we consider some of the same techniques for optimizing 
WU protocols. In that work, write caches and dynamic hybrid protocols achieved better 
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performance than WI. Our work is distinguished by our focus on the source and use- 
fulness of updates (and their associated acknowledgements), which allows us to relate 
program modifications to protocol improvements, evaluate protocol optimizations with 
respect to reductions in network traffic, and suggest new optimizations to update-based 
protocols. In addition, our evaluation of the running times associated with optimiza- 
tions to WU protocols is intended to capture the impact of bandwidth and block size 
on performance, which is not the focus of previous work. Furthermore, by treating both 
bandwidth and block size as parameters, and by considering several additional modifi- 
cations to a WU protocol, we explore interactions between these factors not previously 
observed. 

The remainder of this chapter is organized as follows. We first describe our simula- 
tion methodology, performance metrics, and application workload in section 6.1. Section 
6.2 presents the miss rate and network traffic associated with each of our applications 
under the non-optimized WI and WU coherence protocols. In section 6.3, we explore 
the effects of bandwidth and cache block size on the performance of the two protocols for 
each of our programs, using running time as our main evaluation metric. In section 6.4, 
we explain the causes of poor WU performance, introduce our categorization of update 
traffic, and evaluate several optimizations to WU with respect to the categorization and 
execution time. Section 6.5 investigates the performance of the protocols we consider 
on next-generation architectures. Section 6.6 contains a summary of our findings. 

6.1     Methodology and Workload 

6.1.1    Multiprocessor Simulation 

We use detailed execution-driven simulation to model a scalable multiprocessor with 32 
nodes. Once again, each node in the simulated machine contains a single processor, a 
write buffer, cache memory, local memory, directory memory, and a network interface. 
Each processor has a 64 KB direct-mapped data cache. The data cache block size, the 
unit of fetching and coherence, is one of the parameters in our simulations; we consider 
small (16 bytes), medium (64 bytes), and large block sizes (256 bytes). 

All instructions are assumed to take one cycle. A data read that hits in the cache 
also takes 1 cycle. Read misses stall the processor until the read request is satisfied. 
Writes go into an 8-entry write buffer and take 1 cycle, unless the write buffer is full, 
in which case the processor stalls until an entry becomes free. Reads are allowed to 
bypass writes that are queued in the write buffers. Furthermore, reads have priority 
over writes for accessing the cache and memory bus, but are prevented from accessing 
the cache while a write is updating it. 

In order to model the limited number of pins in real processors, reads and writes 
contend for off-chip access. The cache is assumed lockup-free, so that the cache can be 
accessed while off-chip references are pending. Reads or writes may be locked out of the 
cache whenever the cache is being invalidated or updated from the outside. The lockout 
period is 2 cycles and occurs (if necessary) at the end of a memory bus operation. 
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A pipelined memory bus (clocked at one fourth of the speed of the processor) con- 
nects the main components of each machine node. A new bus operation can start every 
20 processor cycles. The memory can provide the first word 32 processor cycles after 
the request is issued. The width of the memory bus (memory bandwidth) is another 
parameter of our study and varies according to the network path width. 

As in previous chapters, the simulator implements a full-map directory for controlling 
the state of each block of memory. Shared data are interleaved across the machine at 
the block level. Each node contains the directory for the memory associated with that 
node. 

The characteristics of the interconnection network we use in this chapter are exactly 
the same as described in chapter 5. We experiment with two finite bandwidth networks 
with 16 and 64-bit wide data paths. In all our machine configurations we assume that 
the bus width is the same as the network link width. 

Our WI protocol keeps caches coherent using the DASH protocol with release con- 
sistency [Lenoski et al, 1990]. In our WU implementation, a processor writes through 
its cache to the home node. The home node sends updates to the other processors 
sharing the cache block, and a message to the writing processor containing the number 
of acknowledgements to expect. Sharing processors update their caches and send an 
acknowledgement to the writing processor. Since we assume release consistency, the 
writing processor does not have to wait for update acknowledgements before continu- 
ing execution; the processor only stalls waiting for acknowledgements at a lock release 
point. Under this protocol, blocks are evicted from the cache only due to replacement. 

Our pure WU implementation actually includes two optimizations. First, when the 
home node receives an update for a block that is only cached by the updating processor, 
the acknowledgement of the update instructs the processor to retain future updates 
since the data is effectively private. This optimization is analogous to the shared line 
on the bus of the Dragon [McCreight, 1984] and Firefly [Thacker and Stewart, 1987] 
multiprocessors. Second, when a parallel process is created by fork, we flush the cache 
of the parent's processor, which eliminates useless updates of data initialized by the 
parent but not subsequently needed by that processor. 

6.1.2    Performance Metrics 

The focus of this chapter is on a categorization of the coherence traffic in update-based 
protocols (refer to appendix A). However, we also present the running time of the 
parallel section of the code and its components (busy time, read latency, write latency, 
and blocked time). In addition, we consider read miss rates and the total network 
traffic. We concentrate on read misses because we assume relatively deep write buffers 
and release consistency, which serve to hide the cost of writes. The read miss rate is 
computed solely with respect to shared references; that is, the read miss rate is defined 
as the total number of read misses on shared data divided by the total number of reads 
to shared data. We classify cache misses using the algorithm described in [Dubois et al., 
1993] as extended in appendix A. 
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Application Shared Refs Shared Reads Shared Writes 
(% of shared refs) (% of shared refs) 

Mp3d 5.1 M 60% 40% 
Barnes-Hut 19.0 M 97% 3% 
CG 6.8 M 98% 2% 
Em3d 6.7 M 91% 9% 
Blocked LU 47.3 M 90% 10% 
SOR 20.7 M 85% 15% 

Table 6.1: Memory reference characteristics on 32 processors. 

6.1.3    Workload 

Our application workload consists of six parallel programs, some of which have been 
described in previous chapters: Mp3d, Barnes-Hut, CG, Em3d, Blocked LU, and SOR. 
Mp3d simulates 30000 particles for 5 steps. Barnes-Hut simulates 2K bodies for 4 time 
steps. CG uses the conjugate gradient method to compute an approximation to the 
smallest eigenvalue of a 1400 X 1400, sparse, symmetric positive definite matrix with 
78148 non-zero elements. Our CG implementation is a C version of the CG kernel from 
the NAS parallel benchmarks suite [Bailey et al, 1994]. Em3d simulates electromagnetic 
wave propagation through 3D objects. We simulate 20000 electric and magnetic nodes 
connected randomly, with a 10% probability that neighboring nodes reside in different 
processors. We simulate the interactions between nodes for 30 iterations. Blocked LU 
and SOR run on 384 X 384 matrices. 

The code for our applications was generated by a MIPS C compiler with -02 opti- 
mization flag. Table 6.1 summarizes the distribution of shared references in our appli- 
cations. 

6.2     Miss Rates and Message Traffic of WI vs. WU 

In this section we examine the miss rates and network traffic produced by WU and WI 
protocols on our application suite, so as to quantify the lower miss rates of WU and 
reduced message traffic of WI. 

Figure 6.1 presents the read miss rate of our applications for WI (left) and WU (right) 
(assuming 64-byte cache blocks). The percentage at the top of each column represents 
the percent of all read references to shared data that result in a miss; within a column 
misses are classified as either eviction, cold start, true sharing, or false sharing misses. 
Since WU only removes blocks from the cache due to evictions, WU has only eviction 
and cold-start misses; sharing-related misses are eliminated since multiple writes to the 
same block can be issued by one or more processors without causing any of them to lose 
that block. 
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Figure 6.1: Miss rate under WI (left) vs. 
WU (right) for 64-byte cache blocks. 

Figure 6.2: Bytes transferred under WI 
(left) vs. WU (right) for 64-byte cache 
blocks. 

From figure 6.1 we can see that, as expected, WU always results in lower read miss 
rates, even though WI usually exhibits lower replacement miss rates as invalidations 
effectively free up cache space. For Mp3d, Em3d, and SOR the difference in read miss rate 
is particularly large; the read miss rate under WI is a factor of 50-140% higher than 
under WU. For other applications, this difference is not as significant, as replacements 
dominate the miss rate under both protocols. These general effects are consistent across 
the block sizes we consider, although the magnitude of the miss rate differences varies 
slightly for other block sizes. 

Although WU produces lower miss rates, it is at the cost of many update messages. 
Figure 6.2 presents the total number of bytes transferred by each coherence protocol for 
each application (again assuming 64-byte cache blocks). The number at the top of each 
column represents the number of MBytes transferred by the two protocols; within a 
column the traffic is classified as either data, coherence (includes invalidations, updates, 
and acknowledgements), and requests. This figure clearly shows that in terms of the 
number of bytes transferred, WU requires much more network traffic than WI, except 
in the case of Em3d. For Mp3d there is more than an order of magnitude difference in 
the amount of data transferred by the network, 646 Mbytes for WU vs. 61 Mbytes 
for WI. In terms of the number of messages sent, this corresponds to 70 M messages 
for WU vs. 2.5 M messages for WI. Barnes-Hut and SDR have lower miss rates, and 
therefore require less communication, but the difference between WU and WI is again 
substantial; WU transfers nearly twice as many bytes as WI, and requires about 5 times 
as many messages. Again, this effect is consistent across block sizes. 

Em3d is an exception as the network transfers less data under WU than under WI, 
independently of the cache block size. The most important reason for this effect is that 
the increase in coherence traffic associated with WU is somewhat limited, since cache 
blocks effectively shared are very infrequently written in this program. 
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Comparing the amount of data and coherence traffic involved in our applications 
(shown in figure 6.2), we observe that the network traffic associated with WU is dom- 
inated by updates and their corresponding acknowledgements (rather than misses) in 
most cases, and this traffic usually grows significantly with an increase in block size. 
Even if a larger block size produces a lower miss rate, and hence less network traffic 
due to misses, the reduction in network traffic due to fewer misses is overwhelmed by 
an increase in the number of updates. 

In summary, WU can lower the miss rate by roughly 10-60% over Wl, while increas- 
ing network traffic by as much as an order of magnitude. The benefits of the lower miss 
rate depend on the remote access latency of the machine, while the costs of the addi- 
tional network traffic depend on the available network bandwidth. In the next section, 
we consider whether future increases in network bandwidth will be sufficient to resolve 
this tradeoff in favor of WU. 

6.3     The Effect of Bandwidth and Block Size on Perfor- 
mance 

In this section we consider whether expected increases in network and memory band- 
width enable a pure WU protocol to outperform Wl on a scalable machine. We also 
investigate how changes in block size affect our comparison of the protocols. 

Figures 6.3-6.8 present the running time of each application in our suite under the 
two different protocols, for three levels of bandwidth and a range of cache block sizes. 
As seen in the figures, Wl performs better than WU for Barnes-Hut and Mp3d; the two 
protocols achieve comparable performance for CG and SOR; and WU outperforms Wl for 
Em3d and Blocked LU. 

In general, any comparison between Wl and WU protocols must consider the neg- 
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ative impact of the higher cost of read accesses under a Wl protocol, in contrast with 
the potential degradation caused by the excessive network traffic generated under a 
WU protocol. Figures 6.3-6.8 illustrate the effect of bandwidth and cache block size 
on this tradeoff. Medium bandwidth significantly degrades the performance of 256-byte 
blocks (which produce the lowest miss rates for all applications and protocols, except 
Barnes-Hut) regardless of the protocol. Increasing the bandwidth alleviates the perfor- 
mance degradation associated with the larger blocks, while not significantly affecting 

the performance of the smaller blocks in most cases. 

High bandwidth diminishes the impact of the update traffic independently of the 
block size and could potentially provide an advantage to the WU protocol. Our simula- 
tion results do not indicate a performance advantage of WU over Wl, however. Given 
infinite bandwidth, WU performs slightly better (if at all) than Wl for small cache 
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blocks, while the performance of the two protocols with large blocks is indistinguish- 
able for three of our applications. The exception is Mp3d, for which WU is significantly 
worse across all block sizes, even though WU results in lower miss rates. The fact that 
infinitely-wide data paths do not enable WU to perform much better than WI suggests 
that bandwidth alone is not enough to justify using WU. 

The enormous network traffic associated with WU causes several forms of perfor- 
mance degradation ultimately due to an increase in network and memory congestion. 
The degradation may manifest itself in many different ways, such as (1) increased 
read latency, (2) increased write latency induced by processor stalls due to full write 
buffers, (3) increased synchronization overhead whenever processors must wait for up- 
date acknowledgements before releasing locks, and (4) increased synchronization laten- 
cies whenever the processor holding a lock has its (blocking) reads delayed by previous 
messages. In addition, an excessive number of update messages may cause processors 
to be locked out of their caches frequently. 

We can observe the contribution to running time of these effects in figures 6.9-6.14. 
These figures break down the cumulative running time of processors (normalized to the 
time for WI with 16-byte blocks) under infinite bandwidth. The WI performance is 
shown on the left of each pair of bars; WU is on the right. The categories of time are 
(from top to bottom): processor blocked (or, in other words, lock acquire) overhead, 
lock release (including write buffer flush) overhead, stall time due to a full write buffer, 
stall time when a processor cannot access its cache (lockout), read access cost minus 
the lockout time, and processor busy time. 

These figures show that each effect described above contributes to the tradeoff be- 
tween WU and WI. Barnes-Hut (figure 6.9) performs better under WI than WU due to 
the relatively high (and constant) cost of read accesses, and the extra lock release and 
processor blocked overheads under WU. For Mp3d, read latencies and processor blocked 
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overheads are extremely high for WU for all block sizes, and dominate the comparison 
against WI. Lock release overheads hurt WU performance for CG (figure 6.11), espe- 
cially with the larger block sizes. The performance of the two protocols is comparable 
in most cases for SOR. For Em3d, WU performs better than WI, especially with 64-byte 
blocks; the performance of WU with 256-byte blocks is degraded by lockout overhead. 
For Blocked LU, the read latency under WU is slightly lower than under WI for 16 and 
64-byte blocks. With 256-byte blocks the latency of reads under WU is actually larger 
than under WI, even though the WU miss rate is lower. The performance advantage ob- 
tained by WU is due to significantly lower processor blocked overheads than under WI. 
The reason for this effect is that Blocked LU is plagued by a large sequential processing 
component, which is reduced as a result of the fewer misses under a WU protocol. 

It is clear from these figures that a lack of bandwidth is not the only problem with 
WU. Figures 6.3-6.6 showed that no amount of bandwidth enables WU to perform 
significantly better than WI in all cases. Although hardware techniques designed to 
alleviate a particular source of overhead, such as cache lockout, might help, the most 
significant source of overhead is the update messages themselves. We will now consider 
how to reduce the network traffic associated with WU. 

6.4    Improving Write Update Performance 

The previous section showed that high network and memory bandwidth is not enough to 
enable WU to consistently outperform WI. The excessive number of updates produced 
by WU introduces several performance problems, all of which could be alleviated by 
reducing the number of messages used by the WU protocol. We first consider how 
many updates are actually required for correct execution of the program, and then 
evaluate techniques for combining multiple updates in one message and eliminating 
useless updates. 

6.4.1     Useful vs. Useless Updates 

In order to investigate ways in which to eliminate update messages, we classify updates in 
terms of their usefulness to the processors receiving them. We classify updates as useful 
and useless. An update is useful if the processor references the updated word before 
the next update ofthat word arrives; otherwise the update is useless. Intuitively, useful 
updates are those updates required for correct execution of the program, while useless 
updates could be eliminated entirely and not affect the correctness of the execution. 

We divide useless updates into four categories: proliferation, false, replacement, and 
termination updates. Update messages are classified at the end of an update's lifetime, 
which happens when it is overwritten by another update to the same word, when the 
cache block containing the updated word is replaced, or when the program ends. If, 
between two updates to a word, the cache block containing the word is not referenced, 
then we classify the first update as a proliferation update. If another word in the same 
block is referenced, then we classify the first update as a false (sharing) update.   If 
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a processor receives an update to a word and, before referencing the word, the corre- 
sponding cache block is replaced, then we classify the update as a replacement update. 
If a processor receives an update and the program terminates without referencing the 
block again, then we classify the update as a termination update. 

This categorization is fairly straightforward, except for our false update class. Suc- 
cessive (useless) updates to the same word in a block are classified as proliferation 
instead of false sharing updates, if the receiving processor is not concurrently accessing 
other words in the block. Thus, our algorithm classifies useless updates as proliferation 
updates, unless active false sharing is detected or the application terminates execution. 

Although by no means unique, our categorization is intuitive, while being sufficiently 
simple to compute, as it does not require any future knowledge of sharing behavior or 
an excessively large amount of memory. Greater details about the categorization and 
the algorithms we use in our simulations can be found in appendix A. 

An analysis of the update messages sent during our simulation experiments shows 
that the number of useless updates is extremely high: more than 95% of all updates sent 
during execution of Barnes-Hut, Mp3d, and Blocked LU are useless, while between 60% 
and 90% of all updates in CG, Em3d, and SOR are useless. Despite the two optimizations 
described in section 6.1, which eliminate useless updates for data that is effectively 
private and for data that is initialized by a parent process prior to a fork, the vast 
majority of the remaining updates are still useless. 

Figures 6.15 and 6.16 present the number and types of useless updates found in our 
programs. We separate the applications into two groups according to the percentage 
of useless updates found in the applications. Applications with more than 90% useless 
updates consistently across block sizes are in the first group. The other applications 
are placed in the second group. The number on top of each column represents the total 
number of updates (in millions). 
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Proliferation updates clearly dominate in two of the programs, Barnes-Hut and 
Mp3d. Proliferation updates are also an important factor for Blocked LU, but replace- 
ment updates dominate when using the largest block size we consider. In the case of 
Em3d, both proliferation and false updates are significant for 256-byte cache blocks. Use- 
ful and replacement updates are major contributors in CG, while useful and proliferation 
updates are significant in SOR. 

In most cases, increasing the block size leads to more widespread sharing of cache 
blocks, which in turn causes an increase in the number of useless updates. The only 
exception to this trend is SDR, which exhibits a slight reduction in the number of updates 
as we increase the block size. This result is mainly caused by differences in sharing 
behavior for different block sizes. Recall that our WU protocol does not issue updates 
(after the first one, of course) if no other processor is sharing the written block. Thus, 
in the beginning of the computation, processors have more time to write to blocks not 
yet shared by other processors when assuming the larger block sizes. 

By relating the frequency of useless updates back to the source code, we can gain 
insight into the sharing patterns that produce them. Our analysis shows that widely- 
shared data are one common source of useless updates. A single processor that modifies 
data in a critical section sends an update message to each processor that has ever 
accessed the variables in the critical section, even though only one processor (the next 
one to enter the critical section) will need those updates. Shared counters and global 
work queues both produce numerous useless updates of this type. For example, 98% of 
the updates (with 64-byte cache blocks) in Mp3d can be found in a single routine that 
updates the cell array describing the state of the simulation space. More than 90% of 
those updates are proliferation updates. 

Multiple consecutive writes to the same word may also cause a large number of 
proliferation updates, as each write except for the last one is guaranteed to be useless 
to the processors sharing the cache block. The sequential LU phase of Blocked LU 
generates useless updates due to this referencing behavior. 

Under certain circumstances pair-wise sharing can be an important source of useless 
updates. If two processors share data and neither is the home node for the data, then 
each write to the shared data results in a useless (proliferation) update to the home 
node. Thus, even if the data is truly shared between the two processors, there will 
be a proliferation update per useful update. Consider SOR with 64-byte blocks as an 
example. Of the 290K proliferation updates in the program, 250K updates (which is 
40% of all updates) are proliferation updates to the home node. 

Load balancing schemes are another common source of useless updates. Work that 
migrates to an idle processor may leave behind a copy of the data in the cache, causing 
updates to retrace the path of migration. Roughly 46% of the updates in Barnes-Hut 
with 64-byte blocks occur in a single routine, and the vast majority of those updates are 
useless, proliferation updates caused by moving a body from one processor to another 
without flushing the cache. The more load imbalance occurs, the more bodies move 
among processors, creating new recipients for updates. 

False sharing is another source of useless updates. For Em3d with 64-byte cache 
blocks, 27% of all updates are false updates; the percentage of false updates rises to 



102 

47% with an increase in block size to 256 bytes. Mp3d, Blocked LU and CG also suffer 
from false updates when using 256-byte blocks. 

It is clear from these figures that the elimination of useless updates would improve 
WU performance tremendously. In some cases eliminating useless updates may be easy; 
our examination of the useless updates to the cell array in Mp3d uncovered the fact that 
certain values in the cell array were repeatedly modified but never used. By eliminating 
the useless code, we improved WI and WU running time performance by factors of 2 and 
9, respectively, as well as reduced the number of updates by a factor of 2.5-3 depending 
on block size. Nonetheless, over 90% of all updates in the modified program are still 
useless, mostly proliferation updates. In our subsequent experiments we will use this 
modified Mp3d, referred to as New Mp3d, in place of the original. 

The following sections evaluate the effect of more complicated techniques for re- 
ducing the number of useless updates. We first consider coalescing write buffers, a 
mechanism for combining multiple updates in a single message, and then study the im- 
pact of eliminating replacement updates. Finally, we consider techniques that eliminate 
proliferation updates. 

6.4.2    Merging Updates with Coalescing Write Buffers 

A coalescing write buffer [Jouppi, 1993; Thacker et al., 1992] is simply a cache-block- 
wide buffer capable of merging writes to the same cache block. In the context of a WU 
protocol, this feature allows for a reduction in the number of updates propagated outside 
the processor. A coalescing write buffer is also useful for WI, since it usually reduces 
the average number of occupied buffer entries, and therefore induces fewer processor 
stalls. Note that a coalescing write buffer is slightly different from a write cache (e.g. 
[Dahlgren and Stenstrom, 1994]). A write cache sits between the cache and the memory 
bus and therefore has no effect on the write traffic going from the processor to the cache. 

Our implementation of coalescing write buffers assumes 4 entries, each wide enough 
for a cache block.1 We associate a dirty bit vector with each entry in a write buffer 
indicating the words that were written. If the processor writes to an address in a cache 
block that is already in the buffer, the new write is merged with earlier ones, and its 
dirty bit is set. If the processor writes to a block for the first time, a new buffer entry is 
allocated for the write. Unlike traditional write buffers, our coalescing buffer does not 
attempt to write its entries out immediately; it waits until there are 2 valid entries in 
the buffer or until it is forced to flush entries. When a write is issued from the buffer, 
only the dirty words are sent in the message. A coalesced update message locks out the 
cache of the receiver for the same number of cycles as it takes to transfer an entire cache 
block on the bus, subject to the constraint that the lockout time has to be at least the 
same as the number of dirty words in the coalesced message. 

Our experimental results show that the addition of coalescing write buffers improves 
the execution time performance of both protocols; WI improves slightly, while WU 

'In the previous experiments we assumed an 8-entry non-coalescing write buffer.   We reduce the 
number of entries in the coalescing buffers because each entry takes up more chip area under coalescing. 
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improves significantly. The coalescing buffer's ability to combine multiple writes to 
a specific word does not provide significant performance gains for our applications, 
however. The only application that benefits from this characteristic of the coalescing 
buffers is Barnes-Hut. Under the WU protocol, this application achieves a 5-28% 
reduction in the total number of word updates sent across the network, depending on 
the block size. 

Coalescing reduces the number of bytes transferred under WU by at least 20% in 
most cases. This reduction comes mainly from requiring fewer message headers for the 
coherence traffic. 

The most significant gains provided by coalescing write buffers come from a major 
reduction in the number of coherence messages transferred through the network, with 
a corresponding reduction in the number of acknowledgements required. Figures 6.17 
and 6.18 depict our categorization of the coalesced update transactions involved in our 
two groups of applications. The number on top of each column is the total number of 
coalesced update messages (in millions). 

Our categorization of coalesced messages extends the definitions of useful and useless 
updates to apply to a collection of updated words (those included in a message) as 
opposed to individual words. We define the lifetime of a message to span from the receipt 
of the message until all the words updated by it are overwritten or the corresponding 
block is evicted from the processor's cache. Thus, a message is considered useful (true 
sharing) if at least one of the updates included in the message is useful. A false sharing 
message is one in which none of the updates is a true sharing update and at least one of 
the updates is a false sharing update. A message is classified as a proliferation message 
if all of the updates in the message are proliferation updates. Proliferation messages at 
the end of the program are classified separately as termination messages. A replacement 
update occurs when the block updated by the coalesced message is replaced from the 
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processor's cache and none of the updates in the message is a true sharing update. 

Comparing these figures with the ones in the previous section (where each update 
corresponds to a message), we can see that, for all our programs, coalescing write 
buffers reduce the number of coherence messages under WU by at least 53%, except for 
Em3d with 16-byte blocks. All applications achieve more than 67% improvement in the 
number of coherence messages with the largest cache block we consider. SOR achieves 
the greatest reduction in the number of messages, 91% with 256-byte blocks, due to its 
perfect spatial locality. 

We can also gather from the figures that coalescing changed the overall update 
behavior of two applications completely (Barnes-Hut and Em3d); for these applications, 
increasing the block size results in a reduction of the total number of update messages. 
This shows that these applications exhibit good spatial locality of writes to cache blocks. 
Three other applications (New Mp3d, Blocked LU and CG) exhibit good spatial locality 
of writes up to 64-byte blocks; larger blocks reverse the trend of decreased coherence 
traffic by significantly increasing the degree of sharing in the programs. 

In terms of the percentage of useful update traffic with and without coalescing, our 
figures depict mixed results. Em3d exhibits an enormous increase in the percentage of 
useful coherence traffic with coalescing and the larger cache blocks, while SOR exhibits 
a significant decrease in that percentage for the same block sizes. The others applica- 
tions exhibit roughly the same percentage of useful traffic, independently of whether 
coalescing is used. These results show that, although coalescing significantly reduces 
the number of messages and bytes sent across the network, there is plenty of room for 
further improvement as most of the coherence traffic is still useless. 

As examples of the execution time improvement provided by coalescing, compare 
figures 6.19 and 6.3. Figure 6.3 shows the running time of Barnes-Hut with conventional 
write buffers as a function of bandwidth and block size, while figure 6.19 shows the same 
type of graph but assumes coalescing write buffers.  Figure 6.20 shows the coalescing 
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running times for New Mp3d. Coalescing provides running time improvements under WU 
of as much as 43% for New Mp3d with infinite bandwidth and 256-byte blocks, and 19% 
for Barnes-Hut also with infinite bandwidth and 256-byte blocks. Other applications, 
such as CG and Blocked LU, also exhibit significant improvements in running time under 
WU and wide coalescing buffers with infinite bandwidth. 

Performance improvements quickly degrade as we decrease the bandwidth available 
in the system, however. For instance, the execution time performance of New Mp3d 
under WU with coalescing, high bandwidth, and 256-byte blocks is a factor of 2 worse 
than with traditional write buffers. The reason for this effect is that, in the presence of a 
non-uniform distribution of memory accesses, coalescing write buffers may cause severe 
memory and network contention, as a result of the longer period of time resources remain 
busy per request. Larger cache blocks (and, therefore, potentially longer transactions) 
and lower bandwidth make this scenario worse. Shorter requests result in a greater 
degree of interleaving in network and memory utilization, allowing more processors to 
continually make forward progress. New Mp3d is again a good example. Under high 
bandwidth and 16-byte blocks, the performance of the program is 18% better with 
coalescing buffers than without them. 

In short, when coalescing write buffers are effective at merging updates to large 
cache blocks, the result is long messages that occupy the network and memory for 
long periods of time and may cause contention. When coalescing write buffers are not 
effective at merging updates, wide buffers designed to hold large cache blocks waste chip 
space. These observations indicate that wide coalescing write buffers are not necessarily 
profitable. 

6.4.3    Eliminating Replacement Updates 

Under the largest cache block size we consider (256 bytes), most updates in Blocked LU 
are replacement updates. These updates are a result of a high replacement miss rate for 
shared blocks, which in turn is caused by the fact that processors access columns of the 
row-major-allocated shared matrix during parts of the computation. We can eliminate 
many of these updates by changing the data layout dynamically, so that the processor 
caches are more efficiently utilized. We experiment with software caching [Bianchini and 
LeBlanc, 1992], a technique originally proposed to reduce false sharing in WI protocols 
that, in effect, allows for a reorganization of the data. 

Software caching consists of copying a range of virtual addresses to a different range 
of virtual addresses, allowing the application to determine when data copies are made, 
when local data is written back to the global data space, and how the data copies are 
organized. As a result, the coherence unit and the coherence protocol are both defined 
by the application. An application can tailor the unit of coherence to the data, thereby- 
avoiding false sharing. It can also "schedule" writes to the global data space in order 
to alleviate contention. Finally, the application can change the data layout in order to 
reduce the number of replacement misses. 

Software caching is only effective when processors can reuse the blocks they load into 
their caches; the technique should be avoided altogether when there is no possibility of 
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reuse. Blocked LU is the only application in our suite that suffers from a high percentage 
of replacement misses and exhibits the potential for reuse. We refer to the software 
caching version of the program as SC Blocked LU. 

In SC Blocked LU, each processor makes a local, re-organized, copy of the data 
it needs, modifies the data as appropriate, and copies the result back to the original 
location when required for data sharing. Copy backs are scheduled in such a way that 
congestion in the network and memories is relieved. This technique incurs the overhead 
of making a local copy, but eliminates coherence transactions caused by false sharing 
and reduces the number of replacement misses in the program. (Note that some false 
sharing may occur when the data is copied back to its initial location, but this overhead 
is unavoidable if the algorithm requires the modified data back in the original location.) 

Our simulation results show that software caching does reduce the network traffic of 
WU substantially. SC Blocked LU with 256-byte cache blocks sends about 3M update 
messages and 149MB of data across the network, while Blocked LU sends about 22M 
updates and 680MB of data with the same block size. Note that, for these cache 
block sizes, software caching reduces the number of bytes sent through the network 
substantially more than coalescing does, 78% against 33%. 

As seen in figure 6.21, the reduction in the number of update messages sent by 
SC Blocked LU across the network comes from a 95% reduction in the number of re- 
placement updates, a 94% reduction in false sharing updates, and a 77% reduction in 
proliferation updates. The percentage of useful updates increased from about 1% to 
24% of the total number of updates, which is still somewhat small. 

SC Blocked LU exhibits much better running time performance (shown in figure 
6.22) than Blocked LU for the larger cache block sizes. Comparing the Wl and WU 
executions of SC Blocked LU, we see that the impact of our program modifications is 
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greater for WI than for WU. The WU implementation suffers greatly from an increased 
critical path of execution, due to excessive update traffic backing up at the processor 
running the sequential LU phases of the algorithm. In section 6.4.5, we investigate 
whether coalescing can alleviate this problem. 

6.4.4    Eliminating Proliferation Updates 

In this section, we evaluate the performance of two strategies that can use invalidations 
to reduce the number of useless updates in update-based protocols. The first strategy 
consists of a hybrid WI/WU coherence protocol that allows for the static determination 
of the protocol to use on a per cache block basis. This strategy is an extension of 
the work presented in [Veenstra and Fowler, 1992] for bus-based multiprocessors and 
is referred to as our static hybrid protocol. The second strategy we study can also 
be considered a hybrid protocol in which processors dynamically self-invalidate cache 
blocks according to the update traffic directed to them. Protocols of this kind are 
usually referred to as competitive update protocols [Karlin et al, 1988]. 

Static Hybrid 

A static hybrid protocol must decide, for each cache block, whether that cache block 
should be managed with WU or WI. A selection policy is a rule for deciding whether a 
given cache block should use WU or WI. A block that uses WU is called a "WU-block" 
and a block that uses WI is called a "WI-block". 

The motivation for using WU as opposed to WI for a certain cache block is that 
the read latency for the block may be reduced under WU, but only at the cost of 
some extra coherence traffic. Our selection policies estimate the read latency and the 
coherence overhead associated with each block under the different protocols. If a cache 
block has less coherence overhead with WU than read latency with WI, then that 
block should be included in the set of WU-blocks. In addition, it may be worthwhile 
to include a cache block in the set of WU-blocks even though that block has higher 
overhead with WU than with WI. The reason for this is that the updates can often be 
done in parallel with processor busy cycles, so the cost of the updates is hidden. Read 
misses, however, stall the processor. If too many cache blocks are included in the set of 
WU-blocks, however, then the additional update operations will increase network and 
memory contention. Thus, when deciding whether to include a cache block in the set 
of WU-blocks, the static hybrid selection policy must balance the potential reduction 
in cache misses against the potential increased cost of a cache miss. 

The information needed by the selection policies is obtained from a simulation run 
that collects statistics about each cache block. The statistics needed to facilitate the 
selection of the WU-blocks are listed below. 

• Rereads. The number of rereads for a cache block is the number of times a 
processor had to reread that block. If cache replacement effects are ignored, then 
using WU on a given cache block can eliminate all the rereads for that block. 
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• Extra updates. The number of extra updates is estimated by counting the total 
number of writes to a cache block and subtracting the number of invalidations 
required by WI for that cache block. Writes to a cache block that has not yet 
been shared are not included in the number of extra updates. This metric is 
intended to quantify the number of extra write operations that would be required 
if WU were to be used on that cache block. 

The static protocol policies differ in how they use this information to select the 
WU-blocks. The first policy we study is conservative in selecting WU-blocks in that 
only those cache blocks that are estimated to have less coherence overhead using WU 
than read latency under WI are included in the set of WU-blocks. These blocks can be 
characterized by satisfying the following formula: (extra updates x cost of an update) < 
(rereads x cost of a read). We will refer to the left and right-hand sides of this formula 
as WU-cost and WI-cost, respectively. We will refer to the sum of all WU and WI-costs 
of the blocks selected as Total WU-cost and Total WI-cost, respectively. 

To the set of blocks chosen with our first selection policy, one can add blocks for 
which WU-cost > WI-cost. In this case, the rereads required by WI would be traded 
for the extra updates required by WU. Our second static hybrid policy selects blocks 
among the ones with the largest ratios (WI-cost / WU-cost) for inclusion into our first 
set of blocks. The policy includes just enough blocks to make Total WU-cost == Total 
WI-cost. More aggressive policies can be defined by allowing the number of WU-blocks 
to grow until the ratio between the two total costs exceeds a certain threshold. We 
study policies for which Total WU-cost is 10%, 20%, and 50% more than Total WI-cost. 
Our write stall statistics show that 25% of the non-overlapped cost of an update is a 
reasonable assumption for the update cost as observed by processors. We include more 
than one selection policy in our study in order to find a close approximation to the best 
policy. 

Our experiments show that the second selection policy tends to deliver the best 
results overall for the static hybrid protocol. The effect of the protocol using this policy 
on the update traffic can be seen in figures 6.23 and 6.24. We can see in the figures 
that the static hybrid strategy is very successful at reducing the amount of (useless) 
coherence traffic in all applications, except for CG and Em3d. This reduction in the 
amount of useless traffic does not significantly increase the percentage of useful updates 
however, since the static hybrid protocol eliminates both useless and useful updates, 
but does not guarantee that more useless than useful updates are prevented. In fact, in 
two cases (New Mp3d and SOR), the static protocol exhibits a significant decrease in the 
number of useful updates. 

Comparing the coherence traffic results for SC Blocked LU and Blocked LU under 
the static hybrid protocol, we see that software caching entails many fewer useless update 
transactions. Coalescing also compares favorably against the static hybrid technique; 
the former strategy generates as much as 38% less overall traffic than the latter for all 
applications and large block sizes. 

The static hybrid protocol decreases the amount of coherence traffic associated with 
a pure WU strategy by simply not using updates for certain cache blocks, which may 
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Figure 6.23: Categorization of updates 
for group 1 under pure WU (left) and 
the static hybrid protocol (right) for 64- 
byte blocks. 

Figure 6.24: Categorization of updates 
for group 2 under pure WU (left) and 
the static hybrid protocol (right) for 64- 
byte blocks. 

cause an increase in the miss rate. Figure 6.25 presents the read miss rates of our 
applications under WI (left) and the static hybrid strategy (right). Note that, in cases 
where this miss rate degradation is significant (such as New Mp3d and Blocked LU), 
running time performance suffers accordingly. However, even when the miss rates do 
not increase noticeably (as for CG and Em3d), programs may perform worse as a result 
of not using WU for performance-critical blocks. Barnes-Hut was the only application 
to achieve execution time improvements under the static hybrid strategy for relatively 
high bandwidths. Under high and infinite bandwidths and 64-byte blocks, the static 
hybrid approach improves running time performance by 10% in comparison to the pure 
WU protocol. The performance of Barnes-Hut remains worse than WI under the static 
hybrid protocol, however. 

Our experience with the static hybrid strategy clearly demonstrates that its per- 
formance is heavily dependent on good initial estimates for the cost of updates. The 
problem is that it is very difficult to produce cost estimates that can be used effectively 
for all applications. These results suggest that the static hybrid protocol is of limited 
use for scalable multiprocessors, unless compilers can produce accurate estimates of the 
cost of updates for each application. 

Dynamic Hybrid 

The dynamic hybrid strategy is inspired by the coherence protocols of the bus-based 
multiprocessors using the DEC Alpha AXP21064 [Thacker et al, 1992]. In these multi- 
processors, each node makes a local decision to invalidate or update a cache block when 
it sees an update transaction on the bus. The decision depends on the presence of the 
block in the primary cache. (The contents of the secondary cache are a superset of the 
contents of the primary cache.)   When the block is present in the primary cache, the 
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Figure 6.25: Miss rate under WI (left) and the static 
hybrid protocol (right) for 64-byte blocks. 

cache controller updates the copy in the secondary cache and invalidates the copy in the 
primary cache. If the block is updated again before any reference by the processor, the 
cache controller invalidates the copy in the secondary cache. Thus, after at most two 
update transactions, an unused cache block is invalidated from the processing node. 

As in [Dahlgren and Stenstrom, 1994], our implementation of this idea associates 
a counter with each cache block and invalidates the block when the counter reaches a 
threshold.2 At that point, the node sends a message to the block's home node asking it 
not to send any more updates to the node. References to a cache block reset the counter 
to zero. We use counters with a threshold of 4 updates. 

The dynamic hybrid protocol reduces the degree of sharing in applications signif- 
icantly. Taking the average number of updates sent per write to shared data as our 
metric, we see that the dynamic hybrid strategy provides reductions in the degree of 
sharing for 256-byte blocks of as much as factors of 4.8, 2.3, 2.4, 8.4, 6.8, and 5.0 for 
Barnes-Hut, CG, Em3d, New Mp3d, SOR, and Blocked LU respectively, compared to pure 
WU and the other strategies for improving that protocol. Reducing the degree of shar- 
ing is an important characteristic of this strategy, as the running time performance of 
directory schemes based on a limited number of pointers degrades quickly when the 
hardware pointers are frequently exhausted. 

Our categorization of coherence traffic in competitive protocols includes an extra 
category, drop updates, to account for the updates that cause blocks to be invalidated. 

2 The Alpha implementation uses the presence of the block in the primary or secondary cache as an 
implicit counter. 
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As seen in figures 6.26 and 6.27, the dynamic hybrid protocol is very effective at reducing 
the coherence traffic associated with the pure WU protocol. Depending on the appli- 
cation, either the dynamic or the static hybrid protocols generate the least amount of 
update traffic among all techniques we study. Comparing the traffic categorizations for 
SC Blocked LU against the ones for Blocked LU under the dynamic hybrid protocol, we 
find that the dynamic hybrid strategy entails significantly more (useless) updates. Coa- 
lescing generates less total traffic than the dynamic hybrid protocol for all applications; 
CG exhibits the largest difference: 12-31%, depending on the block size. 

Software caching and the dynamic hybrid protocol are the most successful strategies 
for reducing the useless coherence traffic associated with the pure WU protocol, but, in 
some cases, the latter technique also reduces the number of useful updates. A reduction 
in the number of useful updates indicates that the protocol is forcing processors to 
drop copies of blocks they will need later. Dropping such blocks may or may not cause 
running time degradation, depending on a tradeoff between the number and impact of 
useless updates that would have resulted in not invalidating the blocks and the higher 
miss rate. 

Figure 6.28 compares the read miss rates of our programs under WI (left) and 
under the dynamic hybrid protocol (right). Our categorization includes a new class of 
miss (labeled "Drop" in the figure), which occurs when a processor takes a miss on a 
block that was previously in the cache, but was invalidated when its counter reached 
the competitive threshold. The figure shows that CG, New Mp3d, SOR, and Blocked LU 
suffer significantly from bad invalidation decisions, while the two other programs are 
either mildly affected or not at all. The block size affects the drop miss rate of our 
applications in different ways. For the applications with excellent locality (CG and SOR), 
the number of drop misses decreases with an increase in block size, while for the other 
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Figure 6.29: Running time of New Mp3d 
under dynamic hybrid protocol. 

applications it either increases (Em3d and Blocked LU) or remains roughly the same 
(New Mp3d and Barnes-Hut). 

Even though drop misses increase the miss rate of New Mp3d, this application obtains 
significant running time improvements under the dynamic hybrid protocol in comparison 
to pure WU: with 256-byte blocks, for instance, 2%, 19%, and 48% improvements were 
found with medium, high, and infinite bandwidth, respectively. A comparison against 
Wl can be found in figure 6.29. The figure shows that New Mp3d performs somewhat 
better under the dynamic hybrid protocol than under Wl for all bandwidth levels and 
block sizes. Albeit the good results for New Mp3d, the dynamic hybrid strategy does not 
achieve running time improvements for the other applications in our suite. 

The poor miss rate performance of four of our applications under the dynamic hybrid 
protocol can be credited to the fact that, if programs exhibit a high degree of spatial 
locality of writes, 4 updates without intervention from the local processor is too small of 
a threshold, especially for the larger block sizes. One extreme option would have been 
to set the threshold to the number of words in a block plus 1. However, in the absence 
of write locality, this threshold would have entailed a large number of useless updates 
in the case of the large cache blocks. We opted for the threshold of 4 in order to reduce 
the number of useless updates. A combination of coalescing and the dynamic hybrid 
protocol should diminish the importance of the competitive threshold. We study this 
and other combinations of strategies in the next section. 

6.4.5     Combining Techniques 

Our results so far show that coalescing write buffers provide significant reductions in 
coherence traffic accompanied by consistent execution time improvements under the 
higher levels of bandwidth and moderately-sized cache blocks.   The other techniques, 
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although also successful at reducing the total network traffic, don't always deliver run- 
ning time improvements. In this section, we investigate combinations of coalescing with 
the other techniques. 

Under the combination of coalescing and software caching, WU matches the running 
time performance of WI for SC Blocked LU, as the program improves by 8-16% under 
WU, depending on the block size, and the WI performance remains roughly unaltered. 

The combination of coalescing and the static hybrid protocol improved on the ex- 
ecution time performance of the static hybrid technique in isolation in all cases. The 
combination of coalescing and the dynamic hybrid protocol (still with a competitive 
threshold of 4 updates) frequently improves the running time of the dynamic hybrid 
strategy in isolation, while it occasionally improves on the running time of coalescing. 
Coalescing eliminates the problems associated with the specific value of the threshold, 
while the dynamic hybrid optimization reduces the degree of sharing in the program. 
For programs such as New Mp3d and CG, the reduced sharing markedly improves the 
execution time performance of coalescing for the larger cache blocks under the practical 
levels of bandwidth. 

In summary, all techniques we studied and their combinations were very successful 
at reducing the amount of useless coherence traffic generated by pure WU protocols. 
Software caching (when applicable) and the dynamic hybrid protocol stand out as being 
able to significantly increase the percentage of useful updates in applications. Coalescing 
write buffers provided the greatest reductions in the total number of bytes transferred 
as well as the greatest improvements in running time. In only a few instances did 
another technique or combination of techniques outperform coalescing. The major per- 
formance problem for coalescing buffers occurs when cache blocks are very large and 
the bandwidth in the system is not extraordinarily high. 

6.4.6    Potential for Additional Improvements to Update-Based Proto- 
cols 

The traffic categorizations presented in the previous section clearly show that useless 
updates dominate the coherence traffic of our applications, even when techniques in- 
tended to reduce this type of traffic are applied. In this section, we comment on the 
potential for further reductions in the percentage of useless updates. 

Our analysis of the sources of updates in applications shows that a large number 
of proliferation updates stems from a round-robin assignment of pages to processors. 
The problem with this type of mapping is that it is often the case that the home node 
is not one of the processors sharing the blocks for which it receives updates. Thus, a 
simple strategy that can further reduce the number of proliferation updates is to assure 
that one of the processors sharing a block is the home node for that block. In fact, 
the processor that writes to the block the most should be made the home of the block. 
Page placement and migration techniques, such as presented in [Chandra et al., 1994: 
Marchetti et al., 1995], can be used to implement this strategy successfully in many 
cases. If applied to SOR, for instance, this strategy would have eliminated about half of 
the useless updates in the program. 
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Another way in which proliferation updates can be eliminated is by combining writes 
to the same words in software. This optimization can be implemented at the compiler 
level, by having the compiler use registers for shared data writes inside of critical sec- 
tions, and only issuing writes to memory at the end of the section. Our experiments 
with SC Blocked LU implemented this strategy at the application level; throughout the 
program writes to global data were only issued when their final values had been com- 
puted. This scheme proved extremely useful for improving Blocked LU, but did not 
appear applicable to the other applications we studied. 

Flushing widely shared cache blocks at the end of critical sections can also greatly 
reduce the number of proliferation updates. Centralized counters, locks, and barriers are 
examples of data structures that cause a large number of useless updates. Distributing 
those data structures should improve execution time performance even more significantly 
however, as it would avoid the increased read latency generated by block flushes. 

6.5    Protocol Performance on Future Multiprocessors 

Our results so far have shown that WU performs at least as well as WI for «//applications 
and combinations of bandwidth and block size we consider, provided that techniques 
for reducing the amount of useless update traffic are applied. Under infinite bandwidth, 
the running time performance advantage of the update-based protocols over WI ranges 
from a few percent for the applications dominated by replacement misses (Barnes-Hut 
and CG) and applications with extremely small miss rates (SC Blocked LU and SOR) up 
to 23% for the applications dominated by coherence misses (New Mp3d and Em3d). 

Note however that our previous results are based on current architectural assump- 
tions, which do not favor update-based protocols in many respects: replacement misses 
(as opposed to sharing-related misses) dominate the miss rate of many applications, 
network and memory latencies are relatively low considering the latest advances in 
superscalar microprocessors, the highest practical level of bandwidth is relatively low 
considering the amount of data an update-based protocol has to tackle, and our memory 
bus assumptions are such that a coalesced update with one dirty word takes as long to 
complete as if all the words in the (possibly large) cache block were dirty. 

We now extrapolate the current architectural trends in order to explore the WI 
versus WU issue in the context of a more aggressive scalable multiprocessor design. In 
order to quantify the impact of future architectures on protocol performance, we double 
the memory and network latency and bandwidth, simulate a memory bus that can 
handle variable length update operations, and increase the size of caches to 128K bytes. 
This increase in cache size is intended to approximate the availability of relatively large 
second-level caches, as opposed to large primary caches. 

Figure 6.30 presents the WI and WU running times of our applications on a next- 
generation architecture with coalescing write buffers and 64-byte blocks. For all of our 
applications, the difference in running time between the protocols increased under the 
more aggressive assumptions of this architecture. Comparing our previous results for 
high bandwidth and coalescing against these new results, we see that the running time 
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coalescing (right) on next-generation architecture. 

improvement of CG for 64-byte blocks goes from 8% to 12%, while the improvements of 
New Mp3d, Blocked LU, and Em3d go from 8% to 21%, 5% to 21%, and 17% to 21%, 
respectively. These results suggest that the architectural trends we have been observing 
should increase the performance advantage of WU over WI significantly in the future. 

6.6     Summary 

Our simulations of WU and WI coherence protocols for scalable multiprocessors showed 
that, although WU produces a lower miss rate, the enormous network traffic generated 
by WU degrades the running time of some of our applications. Even infinite bandwidth 
is not enough to enable WU to significantly outperform WI on all of our applications. 
We found the cause of the poor WU performance to be that the excessive number of 
update transactions in a pure WU protocol generates network and memory congestion, 
which is reflected in various forms of performance degradation. 

To alleviate the network traffic generated by WU, we classified updates into useful 
and useless categories, and showed that a vast majority of the updates are useless; in 
most cases, useless updates are more than 90% of the total number of updates. By 
relating the useless updates back to the source code, we determined the application 
characteristics that cause useless updates and evaluated several software and hardware 
techniques for eliminating them. These techniques include coalescing write buffers, 
dynamic and static hybrid protocols, and software caching. 
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We studied the isolated and combined effect of these techniques on our categoriza- 
tion of the coherence traffic and on application execution time. Our results showed 
that software caching (when applicable) and the dynamic hybrid protocol are the most 
successful strategies for eliminating useless updates, and that software caching and co- 
alescing write buffers produce the lowest amount of traffic by merging multiple updates 
in a single message. In terms of execution time, coalescing write buffers exhibit the 
most consistent improvements. Coalescing improves WU enormously, but only slightly 
improves WI. Wide coalescing write buffers were shown unnecessary for WU and may 
even cause serious performance degradation in the presence of relatively low bandwidth. 
The combination of coalescing and the dynamic hybrid protocol also performed well. 
Coalescing improves the dynamic hybrid strategy by reducing the importance of the spe- 
cific value of the competitive threshold, while self-invalidating of cache blocks reduces 
the degree of sharing in application programs. 

Although the techniques we considered significantly reduce the useless traffic associ- 
ated with update-based protocols, a large number of useless updates remains. Based on 
that observation, we suggested several directions for further eliminating useless traffic 
in update-based protocols, such as flushing widely shared cache blocks at the end of 
critical sections to reduce the number of proliferation updates found in applications. 

Finally, our experiments showed that WU (with optimizations) performs better than 
our WI implementation for all of our applications, confirming previously published re- 
sults. Current architectural trends (faster processors, longer latency, higher bandwidth) 
significantly magnify the performance difference between the two types of protocols in 
favor of WU. 
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7    Conclusions 

In this dissertation we explored ways to exploit bandwidth to reduce the average mem- 
ory access time in scalable multiprocessors. Our studies considered situations where 
the remote memory access time is dominated by contention, and where the hardware 
provides high remote access bandwidth and the remote access time is dominated by the 
duration of the remote (unsaturated) request/access/reply sequence of operations. 

The main contributions of this thesis are: 

• The design and analysis of eager combining, a hardware coherence protocol that 
uses data distribution and request combining to increase the effective network 
and memory bandwidth. Eager combining was shown to achieve significant im- 
provements in running time performance (as much as a 4-fold improvement), as a 
result of the increase in effective bandwidth. We also showed that eager combining 
consistently outperforms software broadcasting on our application programs. 

• The design and analysis of software interleaving, a software implementation of 
memory interleaving also intended as a strategy for increasing the effective band- 
width available to processors applied to matrix computations. Software interleav- 
ing was shown to dramatically reduce memory contention, performing much better 
than row-major allocation on large-scale machines. When compared to logarith- 
mic broadcasting, we showed that the best choice of technique depends both on 
the type of synchronization used and the number of processors. 

• An analysis of large cache blocks as a way of reducing average memory access 
times in the presence of high remote access bandwidth. Using execution-driven 
simulation we found that the block size that produces the lowest mean cost per 
reference usually falls between 32 and 128 bytes. Our analytical model of large 
cache blocks suggests that the improvements in miss rate beyond 128-byte blocks 
are usually too small to offset the corresponding increase in miss penalty. Our 
model also shows that, although the few applications with excellent spatial locality 
and limited sharing may be able to exploit larger cache blocks, both the remote 
access latency and bandwidth must be much greater than we can expect in the 
foreseeable future for these blocks to improve performance noticeably. 

• The design and analysis of hybrid prefetching, a technique combining hardware 
and software support for stride-directed prefetching.    Our comparison of large 
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cache blocks, and sequential and hybrid prefetching showed that the latter tech- 
nique performs at least as well as the others. In fact, given sufficiently high 
bandwidth and regular memory addressing, hybrid prefetching can perform as 

well as software prefetching. 

• An analysis of write update as a protocol to reduce the average memory access 
time in the presence of high remote access bandwidth. Our simulation results 
showed that even infinite bandwidth is not enough to enable pure write-update to 
outperform write-invalidate consistently. The excessive number of useless update 
transactions in a pure WU protocol was shown to generate various forms of per- 
formance degradation. Our results showed that software caching and the dynamic 
hybrid protocol are the most successful strategies for eliminating useless updates, 

and that software caching and coalescing write buffers produce the lowest amount 

of traffic by merging multiple updates in a single message. We suggested several 

directions for further eliminating useless traffic in update-based protocols. 

Our work led to two overall conclusions. The first is that techniques for increasing 
the effective remote access bandwidth available to processors, in particular software 
interleaving and eager combining, can lower average access times significantly. Soft- 
ware interleaving has much lower cost but a more restricted applicability than eager 

combining. 

The second conclusion is that high remote access bandwidth is not a panacea. Tech- 
niques for overlapping communication and computation we consider suboptimal today 
will probably continue to be so with higher bandwidth, unless they are modified some- 
what. Our work has determined the limitations of these techniques when bandwidth is 
not a major constraint and includes a few attempts at modifications of the techniques. 

Our contributions and conclusions apply directly to scalable cache-coherent multi- 
processors; the tradeoffs involved in other styles of shared memory multiprocessing are 
roughly similar to the ones we have considered, but a few differences exist. In particular, 
in software distributed-shared-memory systems, the size of the coherence unit (usually 
the same as a virtual memory page) is likely to remain large; not only as a result of the 
extremely high communication latencies of these systems, but also because the machine 
nodes' local memories are used as very large fully-associative caches, eliminating pollu- 
tion problems. Furthermore, these systems alleviate the false sharing problem by using 
relaxed consistency models that allow for multiple concurrent writers per page. 

The fact that software distributed-shared-memory systems defer the transfer of all 
forms of coherence messages to synchronization points leads to different tradeoffs when 
considering whether to use invalidate or update-based protocols for coherence. Delaying 
messages allows for eliminating useless updates and for coalescing several updates over 

a large window of time. 

Clearly more work remains to be done if the bandwidth to be provided by future 
multiprocessor architectures is to be put to good use. Some of this additional work can 
follow from specific contributions made in this dissertation: 



119 

The advent of highly superscalar processors with clock speeds of several hundred 
MHz is likely to generate new interest in contention alleviation techniques. A po- 
tential avenue for investigation is the performance impact of software interleaving 
and eager combining in the context of these processors. 

In chapter 5 we assumed an ideal implementation of software prefetching. How- 
ever, software prefetching compilers have limitations, such as an inability to detect 
potential replacement misses caused by dynamically-allocated data. A study of 
the combination of sequential or hybrid prefetching and software prefetching is 
another opportunity for extending our work. 

In chapter 6 we suggested several techniques that can further reduce the amount of 
useless traffic in update-based coherence protocols. Additional research on these 
techniques is very likely to lead to significant performance improvements. 

Parallel programs do not require high remote access bandwidth constantly; execu- 
tions alternate between phases of high and low bandwidth requirements [Boothe 
and Ranade, 1993]. Another interesting piece of research could investigate tech- 
niques for adjusting how "aggressively" latency-tolerant techniques are applied 
during the execution of a program, depending on estimates of bandwidth utiliza- 
tion. 



120 



121 

A    Algorithms for Categorizing 
Communication Traffic 

The existence of multiple copies of the same data in different caches poses the cache co- 
herence problem. There are two common classes of coherence protocol for cache-coherent 
shared-memory multiprocessors: write-update protocols (WU) and write-invalidate pro- 
tocols (WI) Both WI and WU schemes have the potential to introduce communication 
due to a mismatch between the hardware unit of coherence and the data structures 
manipulated by the program. As an example of such a mismatch, consider a situation 
where two processors read and write different portions of a multi-word cache block. In 
this case, the coherence protocol has to maintain the copies of the block consistent, 
even though each processor will never use the other processor's changes 1. Relatively 
small caches can also cause unnecessary communication, due to replacement misses in 
the absence of good temporal locality. 

An excessive amount of unnecessary traffic may significantly slow programs down 
by increasing the number and duration of processor stalls. After detection, useless 
communication can be eliminated either by using efficient coherence protocols, clever 
compilers, or program restructuring techniques. 

This appendix is describes algorithms for detecting and categorizing useless com- 
munication under WI and WU coherence protocols. We focus on classifying the major 
sources of communication exhibited by programs simulated under these protocols. In 
section A.l we extend a well-known algorithm for classifying cache misses, in order to ac- 
count for finite-sized caches under invalidate-based protocols. In addition, we introduce 
a new algorithm that accurately characterizes update transactions under a write-update 
protocol. Extensions of this algorithm consider coalescing write buffers and competitive 
update strategies. 

Most of the work dealing with multiprocessor communication does not seek to accu- 
rately characterize the source of the observed traffic. Notable exceptions, such as [Gupta 
and Weber, 1992], have focused on measuring the amount of each type of communication 
(requests, data, and coherence), and coupling these measures with information about 
the reference and sharing patterns of application programs. Studies of multiprocessor 
communication have invariably been concentrated on WI protocols. 

The term false sharing has been used to describe this type of interference in write-invalidate proto- 
cols, e.g. [Eggers and Jeremiassen, 1991; Torrellas et al., 1994]. 
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Although very few papers have studied the usefulness of the communication traffic 
observed when running parallel programs, there has been some research on developing 
algorithms that attempt to characterize false sharing under invalidate-based protocols 
[Dubois et al., 1993; Eggers and Jeremiassen, 1991; Torrellas et al, 1994]. Dubois et 
al [Dubois et al., 1993] propose a scheme that delays classifying a miss until the subse- 
quent invalidation of the block missed on, or the end of the program (whichever happens 
first). They show that their scheme accurately captures the intuition behind false shar- 
ing and remedies the problems encountered in previous approaches. Our algorithm for 
classifying cache misses extends the one presented by Dubois et al to tackle replacement 
misses. None of the above approaches attempt to incorporate eviction miss detection 
into the classification algorithm. 

Write-update classification schemes have received almost no attention. Khera et 
al [Khera et al., 1993] present an analysis of false sharing that attempts to characterize 
false sharing independently of architecture. However the approach is statistical in nature 
and encompasses several assumptions; such estimates can be extremely inaccurate in 
practice. 

A.l     Algorithms 

In this section we present the algorithms for classifying the major sources of communi- 
cation under both WI and WU coherence protocols. For WI protocols the major source 
of communication is data transfers caused by cache misses, while WU protocols also 
incur a significant amount of traffic caused by update transactions (and their associated 
acknowledgements). 

We assume a simulator structure that has separate routines for handling read misses, 
read hits, write misses, write hits and invalidations. The code we present is an addition 
to the code implementing those routines. 
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void read_hit_class(proc_id, block.id, word) 
int proc_id, block_id, word; 

{ 

if (Comm[proc_id, word]) { 

Essential[proc_id, block_id] = True; 

foreach wrd in block_id 

Comm[proc_id, wrd] = False; 

} 

} 

void read_miss_class(proc_id, block.id, word) 

int proc.id, block_id, word; 

{ 
if (Infinite [proc.id, block_id]) { 

/* Should have been in the cache */ 
H_evict++; 

Classified[proc_id, block_id] = True; 

} else { 

/* Don't know if miss is useful yet */ 

Essential[proc_id, block.id] = False; 

Classified[proc_id, block_id] = False; 

read_hit_class(proc_id, block_id, word); 

} 

} 

void write_hit_class(proc_id, block_id, word) 

int proc.id, block.id, word; 

{ 

if (!Dirty[proc.id, block.id]) 

H_excl++; 

else 

read.hit.class(proc.id, block.id, word); 

foreach proc not sharing block.id 

CommEproc, word] = True; 

} 

void write.miss.class(proc.id, block.id, word) 
int proc.id, block.id, word; 

{ 

read.miss.class(proc.id, block.id, word); 

foreach proc not sharing block.id 

Comm [proc, word] = True; 

} 

Figure A.l: Classification of cache misses under a WI protocol. 
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void complete_miss_request_class(proc_id, block_id) 

{ 
Infinite[proc.id, block.id] = True; 

} 

void invalidate_class(proc_id, block_id, word) 

int proc_id, block_id, word; 

{ 
Infinite[proc_id, block_id]  = False; 
if   (!Classified[proc_id, block.id]) 

classify(proc_id, block_id); 
Comm[proc_id, word] = True; 

} 

void replacement_class(proc_id, block.id) 

int proc_id, block_id; 

{ 
if   (IClassified[proc_id, block_id]) 

classify(proc_id, block_id); 
} 

void classify(proc_id, block_id) 

int proc_id, block_id; 

{ 
if (Present[proc_id, block.id]) { 

if (!Cold[proc_id, block.id]) { 

M.cold ++; 

Cold[proc_id, block.id] = True; 

} else 
if (Essential[proc.id, block.id]) 

H.true ++; 

else M.false ++; 
Classified[proc_id, block.id] = True; 

} 

} 

void end.program.class0 

{ 
foreach proc 

foreach block 
if (IClassified[proc, block]) 

classify(proc, block); 

} 

Figure A.2: Classification of cache misses under a WI protocol - Cont. 
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A.1.1     Data Traffic Under a WI Protocol 

Our algorithm for invalidate-based coherence is a simple extension of the one presented 
in [Dubois et al, 1993]. We categorize cache misses in terms of the reference and sharing 
behavior causing them. We identify four basic categories of misses: 

• Cold start misses. A cold start miss happens on the first reference to a block 
by a processor. 

• True sharing misses. A true sharing miss happens when a processor references a 
word belonging in a block it had previously cached but has since been invalidated, 
due to a write by some other processor to the same word. 

• False sharing misses. A false sharing miss occurs in roughly the same circum- 
stances as a true sharing miss, except that the word written by the other processor 
is not the same as the word missed on. 

• Eviction misses. An eviction (replacement) miss happens when a processor 
replaces one of its cache blocks with another one mapping to the same cache line 
and later needs to reload the replaced block. 

Cold start and true sharing misses are necessary for the correct execution of the 
program, so they can be thought of as useful (essential) misses, while false sharing and 
eviction misses represent shortcomings of the architecture and/or the program and thus 
are considered useless misses. Figures A.l and A.2 present the algorithm for classifying 
cache misses under a WI protocol.2 Misses are classified at the end of a block's lifetime in 
the cache, which happens as a result of an invalidation, a replacement, or the termination 
of the program. An exception to this rule is eviction misses (and exclusive requests) 
which are classified the moment a block is brought into the cache, since the status of 
the block cannot change until the end of its lifetime. 

The main data structures used in this algorithm are six two-dimensional arrays 
indexed by processor identification numbers and cache block numbers, and a matrix 
(Comm) indexed by processor numbers and word addresses. The functionality of each 
data structure is as follows: 

Comm. This bit array saves information about writes to each of the words in the 
system. When a processor writes a word, all remaining processors have their 
Comm bit set for that word. When a processor accesses a word, it checks to see 
if its Comm bit is set. If this is the case and the miss that brought the block into 
the cache is not a cold miss, there was useful communication between processors. 

2Note that our algorithm includes a fifth category, exclusive request transactions. An exclusive 

request operation (caused by a write to a read-shared block already cached by the writing processor) 

is not strictly a cache miss, although the processor may have to stall until it receives ownership of the 

block. 
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Cold. This bit array is used to classify cold start misses. A Cold bit is set when the 
first miss by a processor on a certain block is detected by the algorithm. 

Essential. When a miss occurs it is marked as non-essential. Future references to the 
cache block may change this characterization to essential, if the processor accesses 

a word whose Comm bit is set. 

Classified. This array is used to make sure that a miss classified as an eviction miss 
at the beginning of a block's lifetime does not get reclassified later. 

Infinite. This array represents the caches' contents assuming that caches are infinite. 
A miss on a block present in the processor's cache according to the Infinite array 
determines a replacement miss. 

Present and Dirty. These arrays represent the present and dirty bits associated with 
each block in the caches. These arrays must already exist in any simulation of 

caches. 

A.1.2     Data and Update Traffic Under a WU Protocol 

Our algorithm for classifying the dominant sources of communication traffic under write- 
update categorizes both cache misses and update transactions. Since, in a pure write- 
update protocol, cache blocks are never invalidated, cache misses can only be of two 
kinds: cold start and eviction misses. We have identified five categories of update 
transactions: true sharing, false sharing, proliferation, replacement, and termination. 

True sharing updates are useful, since they are necessary for the correctness of the 
program. The other categories comprise the set of useless updates. More specifically, 

• True sharing updates. The receiving processor references the word modified by 
the update message before another update message to the same word is received. 

• False sharing updates. The receiving processor does not reference the word 
modified by the update message before it is overwritten by a subsequent update, 
but references some other word in the same cache block. 

• Proliferation updates. The receiving processor does not reference the word 
modified by the update message before it is overwritten, and it does not reference 

any other word in that cache block either. 

• Replacement updates. The receiving processor does not reference the updated 

word until the block is replaced in its cache. 

• Termination updates. A termination update is a proliferation update that 

occurs at the end of the program. 

Figures A.3 and A.4 present the algorithm for classifying update transactions under 
a WU protocol.   In this algorithm, misses are classified at the moment they happen, 
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void read_hit_class(proc_id, block.id, word) 
int proc.id, block_id, word; 
{ 

Updused[proc_id, word] = True; 
foreach wrd in block_id 

Refd[proc_id, wrd] = True; 
} 

void read_miss_class(proc_id, block_id, word) 
int proc_id, block_id, word; 
{ 

if  (!Cold[proc_id, block_id]) { 
Cold[proc_id, block_id] = True; 
M_cold ++; 

} else H_evict ++; 
read_hit_class(proc_id, block_id, word); 

} 

void write_h.it„class(proc_id, block_id, word) 

int proc_id, block_id, word; 

{ 
read_hit_class(proc_id, block_id, word); 

} 

void write_miss_class(proc_id, block_id, word) 

int proc_id, block_id, word; 

{ 
read_miss_class(proc_id, block_id, word); 

} 

void recv_upd_class(proc_id, block.id, word) 

int proc_id, block_id, word; 

{ 
if (!First[proc_id, word]) 

First[proc_id, word] = True; 

else 

if (Updused[proc_id, word]) 

U_true ++; 

else if (Refd[proc_id, word]) 

U_false ++; 

else if (end_of.program) 

U_term ++; 
else U_prolif ++; 

Updused[proc_id,  word] = False; 
Refd[proc_id, word]  = False; 

} 

Figure A.3: Classification of data and update transactions under a WU protocol. 



128 

void replace_updates(proc_id, block.id) 

{ 
foreach word in block_id 

if (First[proc.id, word]) { 

if (Updused[proc_id, word]) 

U_true ++; 

else U_replace ++; 

First[proc_id, word] = False; 

} 

void end_program_class() 
{ 

end_of„program = True; 
foreach proc, block,  and word 

recv_upd_class(proc, block, word) 

} 

Figure A.4: Classification of data and update transactions under a WU protocol - Cont. 

since their status cannot change afterwards. Update messages are classified at the end of 
an update's lifetime, which happens when the update is overwritten by another update 
to the same word, when the cache block containing the updated word is replaced, or 

when the program ends. 

The most important data structures used for the classification of update transactions 
are three two-dimensional arrays of bit flags indexed by the processor identification 
number and the word referenced. The functionality of each data structure is as follows: 

Updused. When a processor reads or writes a word in a cache block, the corresponding 
entry of Updused is set, signifying that the word has been used. Upon receipt of 
an update for a word, the algorithm checks the corresponding entry in this array. 
If it is set then the previous update is classified as a true sharing update. 

Refd. When a processor accesses a cache block all words in the block are marked 
as referenced by setting the corresponding entries of Refd. When an update 

transaction is found to be useless, this array is examined to decide between the 
remaining categories. If the corresponding bit in the array is set, it implies that 
some other word in the block has been referenced and, therefore, that the block 

is undergoing active false sharing. 

First. This array allows us to postpone classification of update transactions until there 
have been at least two updates to the same word. 

A. 1.3    Update Transaction Categorization with Coalescing Buffers 

In this section, we show how to adapt our algorithms to classify the major sources 
of communication for hardware that coalesces multiple updates into a single message. 
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Coalescing [Jouppi, 1993] merges writes to the same cache line and only sends them 
out when the number of entries present in the coalescing buffer exceeds a certain value. 
The problem introduced with coalescing is that updates are delivered in groups so the 
messages seen by the communication media are decoupled from the individual updates 
sent by the processors. If our goal is to classify communication (i.e. the messages 
sent by processors) the algorithm of figures A.3 and A.4 is not sufficient. It is however 
relatively easy to extend the algorithm to account for coalescing. First, we need to 
extend the definitions of useful and useless updates to apply to a collection of updated 
words (those included in a message) as opposed to individual words. Second, we must 
consider the lifetime of coalesced update messages. We define the lifetime of a message 
to span from the receipt of the message until all the words updated by it are overwritten 
or the corresponding block is evicted from the processor's cache. Our extended set of 
definitions is as follows: 

• True sharing messages. At least one of the individual updates included in the 
coalesced message is a true sharing update. 

• False sharing messages. None of the individual updates included in the message 
is a true sharing update and at least one of them is a false sharing update. 

• Proliferation messages. All of the updates in the coalesced message are prolif- 
eration updates. 

• Replacement messages.   The updated block is replaced from the processor's 
cache and none of the updates in the message is a true sharing update. 

• Termination messages.  Proliferation messages at the end of the program are 
classified separately as termination messages. 

In figures A.5 and A.6 we present the routines that classify coalesced messages (and 
individual word updates) in the presence of a coalescing write buffer.3 The routines 
dealing with cache hits and misses remain the same as defined in section A.1.2. We also 
keep the same data structures used in that section. However, our definition of message 
lifetime calls for a new data structure, msg, a two-dimensional array of records indexed 
by a processor number and a word address. This array is responsible for keeping track 
of the different messages sent to each cache block and their classification throughout 
the computation. The updates received in each message are identified by having the 
same "time stamps". The classification of each message proceeds over the lifetime of 
the message and obeys the priorities defined by the TRUE_U, FALSEJU, TERM.U, 
and PROLIF-U macros. More specifically, the values representing the classification of 
each message can only grow larger during the message's lifetime. Replacement messages 
override these priorities. 

Due to space constraints, we omit the routines for classifying messages when blocks are replaced 

and when the program ends. 
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«define TRUEJJ 3 
#define FALSEJJ 2 
»define TERM.U 1 
#define PR0LIF_U 0 

void Upgrade_msg(proc_id, word, flag) 
int proc_id, word,  flag; 
{ 

time = msg[proc_id,  word].time; 
/* Update class of words sent  in msg */ 
foreach wrd in block 

if   (time == msg[proc_id, wrd] .time) 
if   (msg[proc_id, wrd] .class < flag) 

msg[proc_id, wrd].class = flag; 
} 

void class_individual_upd(proc_id, word) 
int proc_id,  word; 
{ 

if (Updused[proc_id, word]) { 

U_true ++; 
Upgrade_msg(proc_id, word, TRUE_U); 

} else if (Refd[proc_id, word]) { 

U.false ++; 
Upgrade_msg(proc_id, word, FALSE_U); 

} else if (end_of„program) { 

U_term ++; 
Upgrade_msg(proc_id, word, TERM_U); 

} else { 

U_prolif ++; 
Upgrade_msg(proc_id, word,  PROLIFJJ) ; 

} 
} 

Figure A..5: Classification of update transactions under WU with coalescing. 
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void class_coalesced_msg(proc_id, word) 

int proc_id, word; 

{ 

switch  (msg[proc_id, word].class)  { 
case TRUE.U:       Msg.true ++;  break; 
case FALSEJJ:    Msg_false ++;  break; 
case TERMJJ:      Msg_term ++;  break; 
case PRQLIF_U:  Msg.prolif ++; 

} 

void recv_msg_class(proc_id, block.id, words, nwr) 
int proc_id, block_id, *words, nwr; 
{ 

m_recv[proc_id] ++; 
for  (i = 0;   i < nwr;   i ++)   { 

if   (First[proc_id, words[i]])  { 
class_individual_upd(proc_id, words[i]) ; 
time = msg[proc_id, words[i]] .time; 
remain = 0; 
/* Classify prev msg if about to die */ 
foreach wrd in block_id 

if   (time == msg[proc_id, wrd].time) 
remain ++; 

if (remain ==1) 

class_coalesced_msg(proc_id,words[i]); 
} else First[proc_id, words[i]] = True; 
/*  Initialize data for msg just received */ 
msg[proc_id,words[i]] .time = m_recv[proc_id] ; 
msg[proc_id,words[i]] .class = PROLIFJJPD; 
Updused[proc_id, words[i]] = False; 
Refd[proc_id, words[i]] = False; 

Figure A.6: Classification of update transactions under WU with coalescing - Cont. 
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A. 1.4    Data and Update Traffic Categorization for Competitive Pro- 

tocols 

In this section we present an algorithm for classifying the traffic entailed by a hybrid 
WU+WI protocol inspired by the coherence protocols of the bus-based multiprocessors 
using the DEC Alpha microprocessor. In these multiprocessors, each node makes a 
local decision to invalidate or update a cache block when it sees an update transaction 
on the bus. We extend our categorization of update transactions to include a separate 
category of useless traffic for the update (coalesced message) that causes a block to 
be invalidated. We refer to updates (messages) in this new category as Drop updates 
(messages). 

Figure A.7 presents the necessary modification to the read_miss_class routine (refer 
to figure A.3) and two additional routines to be called when a block is voluntarily 
dropped from the cache. The bit array Dropped records the fact that the corresponding 
block has been invalidated in the processor's cache. The routine drop_update_class 
classifies coalesced update messages and their word update components received for the 
invalidated block. All other routines and variables in our algorithm for a WU protocol 
(with or without coalescing write buffers) can be used without modification for this type 
of hybrid protocol. 
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«define NOTIHE -1 

void read_miss_class(proc_id, block_id, word) 

int proc_id, block_id, word; 

{ 

if (!Cold[proc_id, block.id]) { 

Cold[proc_id, block_id] = True; 

M_cold ++; 

}■  else 
if (Dropped[proc_id, block_id]) { 

M_dropped ++; 

Dropped[proc_id, block_id] = False; 

} else H.evict ++; 

read_hit_class(proc_id, block_id, word); 

} 

void drop_block_class(proc_id, block_id) 

int proc_id, block_id; 

{ 
Dropped[proc_id, block_id] = True; 

} 

void drop_update_class(proc_id, block_id, nwr) 
int proc_id, block.id, nwr; 

{ 
foreach word in block.id { 

time = msg[proc_id, word].time; 

if (time != NOTIHE) { 

foreach wrd in block_id 

if (time == msg[proc_id, wrd] .time) { 

class_individual_upd(proc_id, wrd); 

msg[proc_id, wrd].time = NOTIHE; 

First[proc_id, wrd] = False; 

} 
class_coalesced_msg(proc_id, word); 

} 

} 
U_drop = U_drop + nwr; 

Hsg_drop++; 

} 

Figure A.7: Classification of data and update traffic under a hybrid protocol. 
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